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Abstract  
Internal combustion engine (ICE) performance is greatly influenced by engine speed and throttle 

opening, which contribute to brake power, brake thermal efficiency (BTE), and brake-specific fuel 

consumption (BSFC). This study used simulation and statistical analysis methods, including ANOVA 

and response surface methodology (RSM), to evaluate the impact of these two parameters on engine 

performance. The simulation results showed that brake power increased with increasing engine speed 

and throttle opening, with an average value of 15.09 kW and an R-squared of 0.9886, indicating high 

model accuracy. Brake thermal efficiency also increased with an average value of 24.03% and an R-

squared of 0.9868, indicating increased fuel energy utilization into mechanical energy. Meanwhile, 

specific fuel consumption decreased with increasing engine speed and throttle opening, with an average 

of 385.30 g/kWh and an R-squared of 0.9584. This study confirms that optimization of engine speed 

and throttle opening significantly improves thermal efficiency and reduces specific fuel consumption. 

These findings have significant implications for designing more efficient and environmentally friendly 

engines. In addition, the simulation approach allows for a more precise analysis of engine performance 

without expensive and time-consuming experimental testing. 
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1. Introduction 
The performance of an internal combustion engine (ICE) is influenced by various factors, including 

engine speed and throttle position. These parameters significantly affect brake power, brake thermal 

efficiency (BTE), and brake-specific fuel consumption (BSFC). Understanding the relationship between 

these variables is crucial for optimizing engine performance and fuel efficiency. Previous studies have 

shown that engine speed and throttle play a vital role in determining an engine's overall efficiency and 

fuel consumption (Alenezi et al., 2021; Alenezi, Erdiwansyah, Mamat, Norkhizan, & Najafi, 2020; 

Rosdi, Erdiwansyah, Ghazali, & Mamat, 2025; Szybist et al., 2021). Brake power is a key performance 

metric that reflects the amount of power delivered by the engine to the main shaft. It is directly affected 
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by variations in engine speed and throttle. The findings from the simulation indicate that brake power 

increases with rising engine speed and throttle opening, as illustrated by the quadratic response surface 

model. This aligns with the fundamental principles of engine dynamics, where higher speeds and greater 

air-fuel intake improve combustion efficiency (Ferrari, Gurrì, & Vento, 2024; Gani et al., 2025; 

Onyewudiala & Johnson, 2023; Rosdi, Maghfirah, Erdiwansyah, Syafrizal, & Muhibbuddin, 2025). 

Brake thermal efficiency (BTE) is another critical parameter in engine performance analysis. It 

represents the efficiency with which an engine converts fuel energy into mechanical energy. The study's 

ANOVA results show that BTE increases as engine speed and throttle opening rise, highlighting an 

improvement in energy utilization. This trend is consistent with prior research, which suggests that 

optimized throttle positioning enhances air-fuel mixing, leading to more complete combustion and 

improved thermal efficiency (Bahagia, Nizar, Yasin, Rosdi, & Faisal, 2025; Dahham, Wei, & Pan, 2022; 

Erdiwansyah et al., 2021; Muhibbuddin, Hamidi, & Fitriyana, 2025). Conversely, brake-specific fuel 

consumption (BSFC) measures the fuel required to generate one unit of brake power over time. The 

study results reveal a decrease in BSFC as engine speed and throttle opening increase. This suggests 

that the engine operates more efficiently at higher speeds with an open throttle, as less fuel is needed 

per unit of power output. Similar trends have been observed in previous studies, reinforcing the 

importance of optimizing engine operating conditions to minimize fuel consumption (Abdellatief et al., 

2021; Masum, Masjuki, Kalam, Palash, & Habibullah, 2015; Yana, Mufti, Hasiany, Viena, & Mahyudin, 

2025). 

The importance of engine speed and throttle optimization extends beyond performance enhancement; 

it also has environmental implications. Improved engine efficiency leads to lower fuel consumption and 

reduced emissions, contributing to sustainable transportation solutions. Advances in simulation 

techniques allow for precise analysis and optimization of engine parameters, reducing the reliance on 

costly and time-consuming experimental trials (Aliramezani, Koch, & Shahbakhti, 2022; Fitriyana, 

Rusiyanto, & Maawa, 2025; Jafari & Nikolaidis, 2019; Li, Zhou, He, Chen, & Xu, 2023). This study 

aims to analyze the impact of engine speed and throttle position on engine performance using simulation 

techniques. By leveraging ANOVA and response surface methodology, the research provides insights 

into optimizing engine operation for maximum efficiency and minimal fuel consumption. The findings 

contribute to the growing body of knowledge on engine performance optimization, providing valuable 

guidance for researchers and engineers in the automotive industry. 

The novelty of this article lies in its comprehensive use of simulation techniques to analyze engine 

performance, focusing on the combined effects of engine speed and throttle position. Unlike previous 

studies that primarily relied on experimental methods, this research leverages advanced statistical tools 

such as ANOVA and response surface methodology to provide more precise and predictive insights. 

This approach not only enhances understanding but also facilitates more efficient engine tuning for 

improved performance and sustainability. 

 
2. Methodology 
This study utilizes simulation techniques to analyze the effect of engine speed and throttle position on 

engine performance. The methodology involves the following key steps: 

a. Simulation Model Development: A detailed engine model was developed using specialized 

software to simulate different operating conditions. The model incorporates parameters such 

as engine speed, throttle position, fuel characteristics, and combustion efficiency. 

b. Experimental Data and Validation: To ensure accuracy, the simulation model was validated 

using experimental data obtained from prior studies. The validation process involved 

comparing simulated results with measured values to confirm model reliability. A 

multicylinder 4-stroke gasoline engine is selected for testing, with specifications including 

engine type as shown in table 1, displacement, compression ratio, maximum power, fuel 

system (carburetor or fuel injection), and cooling system (air or water-cooled). The engine is 

coupled with an eddy current dynamometer to apply variable loads and measure power output. 

Commercially available gasoline with a specified octane rating is used as fuel, and SAE-rated 

engine oil is employed for lubrication. 
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Table 1. Engine specification 
Description Specification 

Number of cylinders 

Compression ratio 

4 

17.3 

Total displacement 2 L 

Bore 82.7 mm 

Stroke 93 mm 

Combustion chamber Swirl chamber 

Maximum power 64.9 kW 

 
To ensure accurate data collection, various sensors and instruments are utilized, including a fuel flow 

meter to measure fuel consumption, an air flow sensor for intake measurement, thermocouples to record 

exhaust gas and coolant temperature, pressure sensors to monitor in-cylinder pressure, a lambda sensor 

for air-fuel ratio measurement, a crank angle encoder for precise crankshaft positioning, and an emission 

analyzer to assess CO, CO₂, NOx, and HC emissions. The engine is tested under different loads and 

speeds to evaluate performance parameters. The test conditions include varying engine speeds (e.g., 

1000 - 6000 RPM in increments of 500 RPM), different load conditions (25%, 50%, 75%, and 100% of 

full load), and adjustments to fuel injection and ignition timing. The ambient temperature is also 

monitored and recorded. 

The testing procedure begins with a warm-up phase, where the engine runs at idle speed for 10–15 

minutes to reach steady-state conditions. Baseline testing is conducted under standard conditions 

without modifications. Performance testing involves measuring brake power (BP), brake thermal 

efficiency (BTE), and brake specific fuel consumption (BSFC) at different loads and speeds. 

Additionally, combustion parameters such as pressure vs. crank angle, heat release rate, and ignition 

delay are recorded. The volumetric efficiency and air-fuel ratio are also evaluated. Exhaust emissions 

are measured at each operating condition, and all tests are repeated three times to ensure accuracy and 

minimize errors. 

 
Fig 1. Schematic diagram of the engine 
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c. Design of Experiments (DOE): The study employs a structured DOE approach to 

systematically vary engine speed and throttle position. ANOVA was utilized to analyze the 

significance of these factors on brake power, brake thermal efficiency (BTE), and brake-

specific fuel consumption (BSFC). 

d. Response Surface Methodology (RSM): RSM was applied to develop predictive models for 

engine performance parameters. This method allows for visualization of relationships between 

variables and optimization of engine settings for improved efficiency. 

e. Analysis and Interpretation: The simulated data were analyzed using statistical tools, 

including regression analysis and surface response plots. The results were then compared with 

existing literature to validate findings and assess improvements in engine performance. 

 

This methodological approach provides a robust framework for analyzing and optimizing engine 

performance, ensuring accuracy and reliability while minimizing the need for extensive experimental 

testing. 

 
3. Result & Discussion 
The initial analysis looked at how brake power was affected by fuel blends, engine speed, and throttle 

when utilizing various fuels. According to Heywood (1988), brake power is the power that the engine 

transfers to the main shaft to generate torque and angular speed. The response parameter's ANOVA 

results for braking power are displayed in Table 2. Given that the R-squared is close to 1, the model is 

significant. Eq. 1 describes the relationship between engine speed, engine throttle, and braking power. 

The brake power graph for engine speed and throttle is displayed in Fig. 2. Both the (a) scatter graph 

and the (b) 3D graph display the response surface profile for the quadratic model. The graph indicates 

that the brake power increases as motor speed and throttle increases. 

 

Table 2. ANOVA result response for brake power 
Parameter value 

Std. Dev. 1.14 

Mean 15.09 

C.V. % 7.58 

PRESS 176.51 

R-Squared 0.9886 

Adj R-Squared 0.9843 

Pred R-Squared 0.9744 

Adeq Precision 48.359 

 

  
Fig. 2. Graph brake power for engine speed and engine throttle (a) scatter (b) 3D 

 
Pb =15.44+4.72 * A+9.45 * B+0.58 * C[1]+0.043 * C[2]-0.24 * C[3]-0.51 * C[4]+0.25 * 

C[5]+0.10 * C[6]+4.57 * AB+0.11 * AC[1]-0.042 * AC[2]-0.090 * AC[3]-0.19 * AC[4]+0.10 

(1) 
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* AC[5]+0.069 * AC[6]+0.38 * BC[1]+0.030 * BC[2]-0.21 * BC[3]-0.34 * BC[4]+0.14 * 

BC[5]+0.091 * BC[6]-2.27 * A2+1.38 * B2 

 
Brake thermal efficiency is the ability of fuel's thermal power to generate and transfer power to the 

crankshaft (Duan et al., 2025; Güler & Özkan, 2022; Wang, Shuai, Li, & Yu, 2021). The ANOVA 

response for brake thermal efficiency is displayed in Table 3. With an R-squared of 0.9868, which is 

near to 1, it demonstrates that the model is significant. Eq. 2 illustrates the connection between engine 

throttle, engine speed, and brake thermal efficiency. The brake thermal efficiency graph is displayed in 

Fig. 3. Engine speed and throttle increase in tandem with brake thermal efficiency. 

 
Table 3. ANOVA response for brake thermal efficiency 

Parameter Value 

Std. Dev. 0.73 

Mean 24.03 

C.V. % 3.03 

PRESS 63.44 

R-Squared 0.9868 

Adj R-Squared 0.9817 

Pred R-Squared 0.9736 

Adeq Precision 58.081 

 

  
Fig. 3. Graph BTE as a function engine speed and engine throttle (a) scatter (b) 3D 

 

BTE =24.22+5.66 * A+2.28 * B+1.56 * C[1]+0.41 * C[2]-0.56 * C[3]-1.75 * C[4]+1.01 * 

C[5]+0.27 * C[6]+3.89 * AB-0.043 * AC[1]-0.22 * AC[2]-4.286E-003 * AC[3]+0.24 * AC[4]-

0.19 * AC[5]-0.044 * AC[6]-0.032 * BC[1]+9.523E-003 * BC[2]+0.022 * BC[3]-0.032 * 

BC[4]-0.049 * BC[5]-0.040 * BC[6]-0.94 * A2+0.49 * B2 

(2) 

 
The quantity of gasoline used for every unit of brake power in an hour is known as brake specific fuel 

consumption (Selvakumar, Maawa, & Rusiyanto, 2025; Thangavelu, Ahmed, & Ani, 2014, 2016; 

Thangavelu, Rajkumar, Pandi, Ahmed, & Ani, 2019). The ANOVA response for brake-specific fuel 

consumption is displayed in Table 3. Model terms are considered significant when the Prob > F value 

is less than 0.0500. Additionally, it demonstrates that R-squared is around 1 at 0.9584. Eq. 3 illustrates 

the relationship between engine throttle, engine speed, and brake specific fuel consumption. The 

relationship between engine throttle, engine speed, and brake specific fuel consumption is depicted in 

Fig. 3(a) scatter graph and (b) 3D graph. According to this study, the brake specific fuel consumption 

drops as engine speed and throttle increase. 

 

Table 3. ANOVA response for brake specific fuel consumption 
Parameter Value 

Std. Dev.  22.52 

Mean  385.30 

C.V. %  5.84 
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Parameter Value 

PRESS  63977.65 

R-Squared  0.9584 

Adj R-Squared  0.9425 

Pred R-Squared  0.9126 

Adeq Precision  30.351 

 

  
Fig. 4. Graph of BSFC as a function of engine throttle and engine speed (a) scatter (b) 3D 

 

BSFC =353.62-100.21 * A-51.38 * B-30.69 * C[1]-4.55 * C[2]+9.90 * C[3]+29.72 * C[4]-

16.55 * C[5]-3.63 * C[6]+12.39 * AB+6.66 * AC[1]+4.74 * AC[2]-1.14 * AC[3]-9.01 * 

AC[4]+3.16 * AC[5]-0.19 * AC[6]+0.81 * BC[1]-1.99 * BC[2]-1.75 * BC[3]-0.21 * BC[4]-

0.49 * BC[5]+0.76 * BC[6]+54.35 * A2+2.23 * B2 

(3) 

 
4. Conclusion 
The simulation results in this study indicate that engine speed and throttle opening have a significant 

effect on the performance of the internal combustion engine (ICE). Some of the main findings obtained 

are: 

a. Based on the ANOVA analysis, brake power increases with increasing engine speed and 

throttle opening. The statistical model used has an R-Squared value of 0.9886, indicating high 

accuracy in predicting brake power. The average brake power obtained is 15.09 kW, with a 

standard deviation of 1.14. 

b. Thermal efficiency increases with increasing engine speed and throttle opening, as shown by 

the ANOVA results with an R-Squared of 0.9868. The average BTE value obtained is 24.03%, 

with a standard deviation of 0.73. This indicates an increase in the efficiency of converting 

fuel energy into mechanical energy. 

c. Results show that specific fuel consumption decreases as engine speed and throttle opening 

increase. ANOVA gives an R-Squared value of 0.9584, with an average BSFC of 385.30 

g/kWh and a standard deviation of 22.52. This trend confirms that at high speeds and open 

throttles, the engine operates more efficiently in terms of fuel consumption per unit of output 

power.  

Overall, this study confirms that optimizing engine speed and throttle opening can improve thermal 

efficiency and reduce specific fuel consumption, which ultimately results in improving overall engine 

efficiency. In addition, the use of simulation methods and statistical analysis used in this study allows 

engine performance optimization without the need for expensive and time-consuming physical testing. 
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