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Abstract  

Optimization of complex problems is fundamental across industries, yet traditional methods often 

struggle with high-dimensionality, nonlinearity, and dynamic constraints. This study aims to explore 

how machine learning (ML) techniques address these challenges by enhancing optimization across 

diverse sectors, including engineering, healthcare, energy systems, finance, and transportation. A 

systematic review and analysis were conducted by mapping ML methods to specific domain 

applications, assessing their distribution and impact. Results show that reinforcement learning 

dominates with a 25% share across applications, followed by supervised and deep learning techniques, 

each representing 16.7% of total usage. Specialized approaches such as convolutional neural networks, 

predictive modeling, anomaly detection, Bayesian optimization, and sensor fusion account collectively 

for 41.6%, reflecting the growing diversity of ML-driven solutions. The novelty of this work lies in its 

cross-domain integration, quantifying how ML methods not only replace but enhance traditional 

optimization approaches through adaptability, scalability, and real-time decision-making capabilities. 

Additionally, all examined domains exhibited three major ML application areas, indicating a uniform 

breadth of adoption. In conclusion, ML is redefining optimization practices, offering dynamic, 

intelligent, and domain-adaptive solutions. Future directions are suggested toward enhancing 

interpretability, robustness under uncertainty, and cross-domain generalization. This study was fully 

self-funded through contributions from all authors without external financial support. 

 

 
 

1. Introduction 

 
Optimization problems are fundamental in various industries, where the goal is to determine the best 

decision variables to optimize a specific objective while satisfying a set of constraints. Complex 

optimization problems typically involve features such as high-dimensional variable spaces, multiple 

conflicting objectives, nonlinear constraints, uncertainty, and dynamic environments. According to 

Blum and Roli (2003), these problems often present non-convex, multimodal solution spaces, making 

them substantially more challenging than classical linear or convex optimization tasks. They appear 

prominently in real-world domains such as supply chain network design, energy system management, 
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financial portfolio optimization, and healthcare resource allocation, each demanding sophisticated 

strategies for efficient and effective solutions. The significance of solving complex optimization 

problems is evident in their direct impact on operational efficiency, cost reduction, service quality, and 

competitive advantage. For instance, Marler and Arora (2004) emphasize the role of multi-objective 

optimization in engineering design, balancing cost, safety, and performance requirements. Similarly, in 

logistics, Goetschalckx et al. (2002) show how complex optimization under uncertainty can greatly 

improve distribution networks and inventory systems. These examples illustrate that industries 

increasingly rely on advanced optimization techniques to tackle multi-faceted challenges, where 

traditional methods often fall short in delivering robust and adaptive solutions. 

Traditional optimization methods, such as gradient descent, simplex algorithms, and dynamic 

programming, have historically been effective for small- to medium-sized problems with well-behaved 

structures. However, as problem complexity increases—with higher dimensions, nonlinearity, non-

convexity, or dynamic changes—these methods exhibit serious limitations. Michalewicz and Fogel 

(2004) highlight that classical approaches often struggle with premature convergence to local optima 

and exhibit significant sensitivity to initial conditions. In high-dimensional spaces, the curse of 

dimensionality exacerbates computational burden, making exhaustive search or deterministic strategies 

impractical. Moreover, traditional methods are generally ill-suited for problems with dynamic or 

uncertain environments, where solution spaces evolve over time. Talbi (2009) points out that 

conventional algorithms often require substantial re-computation whenever problem parameters 

change, making them inefficient for real-time applications. In highly dynamic scenarios such as traffic 

routing, energy grid management, or financial markets, where rapid adaptability is essential, traditional 

optimization fails to provide the necessary flexibility. These challenges have paved the way for 

alternative approaches that can learn and adapt, such as those offered by machine learning technologies. 

Machine learning (ML) has emerged as a transformative paradigm capable of addressing the intrinsic 

difficulties associated with complex optimization. Unlike traditional methods that rely heavily on rigid 

mathematical formulations, ML techniques leverage data-driven insights to model underlying 

structures, predict outcomes, and optimize actions dynamically. According to Bertsimas and Dunn 

(2017), supervised learning methods enhance predictive optimization by learning from historical data, 

while reinforcement learning (RL) provides a framework for sequential decision-making under 

uncertainty. These capabilities enable ML-based optimization systems to generalize across problem 

instances, adapt to changing environments, and find near-optimal solutions with reduced computational 

effort. Recent studies have demonstrated the power of ML in tackling high-dimensional and nonlinear 

optimization tasks. Wang et al. (2020) review how deep learning, surrogate modeling, and evolutionary 

strategies embedded with ML can significantly accelerate convergence to optimal or near-optimal 

solutions, especially in problems where evaluations are expensive or derivatives are unavailable. 

Furthermore, meta-learning techniques, as discussed by Hospedales et al. (2021), enable models to learn 

how to optimize across tasks, reducing the need for problem-specific manual tuning. These 

advancements underscore the growing role of ML as a flexible, scalable, and intelligent optimization 

engine across multiple industries. 

This article aims to systematically explore the ways in which machine learning techniques contribute 

to solving complex optimization problems across diverse domains. Building on the foundational works 

of Shukla et al. (2022) and Emmerich and Deutz (2018), we examine the integration of ML with 

optimization tasks, highlighting key methods, application areas, and emerging trends. The focus is on 

both supervised and unsupervised learning approaches, reinforcement learning, and hybrid 

methodologies that synergistically combine traditional optimization with machine learning models to 

address the multifaceted challenges outlined earlier. By synthesizing insights from recent research, this 

article intends to provide a comprehensive understanding of the current landscape and future directions 

in ML-driven optimization. Special attention is given to sector-specific applications such as 

engineering, healthcare, finance, energy, and transportation, where ML has begun to redefine 

optimization strategies. Through this exploration, we seek to uncover not only the transformative 

potential of ML but also the barriers, limitations, and open research challenges that must be addressed 

to realize its full impact on complex optimization problem-solving. 
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2. Machine Learning Techniques for Optimization 
 

Machine learning encompasses a broad range of techniques that have been effectively adapted to 

optimization tasks. Supervised learning methods, such as support vector machines (SVM) and decision 

trees, predict outcomes based on labelled data and are often used to approximate complex objective 

functions or constraints in optimization problems. Deep learning extends this capability by using 

multilayered neural networks to capture hierarchical and nonlinear relationships, enabling more 

accurate modeling of intricate solution spaces, as discussed by Goodfellow et al. (2016). Reinforcement 

learning (RL), meanwhile, is well-suited for sequential decision-making problems where optimization 

must occur over multiple time steps, with agents learning optimal policies through trial and error, as 

highlighted by Sutton and Barto (2018). Evolutionary algorithms, inspired by natural selection, such as 

genetic algorithms and particle swarm optimization, are widely used to explore large, multimodal search 

spaces without relying on gradient information, as surveyed by Eiben and Smith (2015). Each of these 

ML approaches brings unique strengths to optimization. Supervised learning provides fast 

approximations and predictions that can guide search processes. Deep learning offers the ability to 

automatically extract high-dimensional features relevant to optimization goals. Reinforcement learning 

excels at optimizing policies under dynamic and uncertain environments, and evolutionary algorithms 

are particularly powerful in global optimization scenarios where the search space is rugged and full of 

local minima. Wang et al. (2020) emphasize that the complementary nature of these methods allows 

them to be tailored to specific optimization challenges, offering versatile and adaptive frameworks 

compared to rigid traditional approaches. 

Supervised learning improves optimization by enabling predictive modeling of objective functions, 

constraint satisfaction, or feasibility regions. For example, surrogate models built using regression 

algorithms can approximate expensive-to-evaluate objectives, reducing the computational cost of 

optimization, as shown by Forrester and Keane (2009). Classification models can also help identify 

promising regions of the search space where optimal solutions are more likely to be found. By learning 

these mappings from historical data, supervised methods effectively guide optimization algorithms 

toward better solutions faster. Reinforcement learning (RL) models optimization problems as Markov 

Decision Processes (MDPs), where an agent interacts with an environment and learns to maximize 

cumulative rewards through policy optimization. Recent advancements like deep reinforcement 

learning (DRL) allow agents to handle extremely large state and action spaces, facilitating applications 

in robotic control and autonomous systems optimization (Li, 2017). Evolutionary algorithms, on the 

other hand, model optimization as a population-based search process, iteratively improving candidate 

solutions through operators like selection, crossover, and mutation. Deep learning networks enhance 

optimization through autoencoders, convolutional neural networks (CNNs), and recurrent neural 

networks (RNNs), which model complex dependencies in large datasets and enable optimization 

processes such as feature selection, hyperparameter tuning, and system control. 

The integration of ML with traditional optimization techniques has given rise to powerful hybrid 

methods that leverage the strengths of both paradigms. One common hybrid approach involves using 

ML models, such as surrogate models, within traditional optimization frameworks like genetic 

algorithms, simulated annealing, or gradient-based methods. For instance, Jin (2011) highlights that 

surrogate-assisted evolutionary algorithms use machine learning models to approximate expensive 

fitness evaluations, dramatically speeding up convergence without sacrificing solution quality. 

Similarly, reinforcement learning has been integrated with classical control theory to optimize policies 

in robotics and automation, blending model-based and data-driven optimization approaches. Hybrid 

optimization methods have shown notable success in practical applications across industries. Emmerich 

and Deutz (2018) provide examples where ML-driven surrogate models guide multi-objective 

optimization processes in engineering design, significantly reducing the number of required 

simulations. In smart grid optimization, ML methods predict energy demands and renewable energy 

outputs, which are then fed into mixed-integer programming models to optimize energy distribution 

(Zhang et al., 2018). These hybrid methods demonstrate that machine learning can complement, rather 

than replace, traditional optimization, enabling solutions that are more robust, efficient, and adaptable 

to real-world complexities. 
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Recent developments in machine learning have introduced advanced optimization strategies such as 

meta-learning, Bayesian optimization, and neural architecture search (NAS). Meta-learning, or 

"learning to learn," focuses on enabling models to adapt quickly to new optimization tasks by leveraging 

prior knowledge, as discussed by Hospedales et al. (2021). This approach significantly reduces the 

amount of data or computation needed to optimize new problems, making it highly valuable in domains 

where data is scarce or costly to obtain. Bayesian optimization, on the other hand, offers a probabilistic 

framework for optimizing expensive black-box functions. According to Shahriari et al. (2016), 

Bayesian optimization has been particularly successful in hyperparameter tuning of machine learning 

models and optimizing experimental designs, using acquisition functions to balance exploration and 

exploitation efficiently. Neural architecture search (NAS) represents a cutting-edge advancement that 

automates the design of deep neural networks, a complex optimization problem traditionally requiring 

expert intuition and extensive experimentation. NAS methods, as reviewed by Elsken et al. (2019), use 

reinforcement learning, evolutionary algorithms, or gradient-based methods to search the space of 

possible architectures efficiently, achieving state-of-the-art performance in tasks such as image 

classification and language modeling. These recent advancements demonstrate a growing trend toward 

more autonomous, intelligent optimization processes that can generalize across domains, reduce human 

intervention, and further push the boundaries of what is achievable with machine learning-driven 

optimization. 

 

Table 1. Machine Learning Techniques for Optimization 

Topic Description Key References 

Supervised Learning Predict outcomes based on labeled data to guide 

optimization (e.g., surrogate modeling, constraint 

approximation). 

Goodfellow et al. 

(2016), Forrester and 

Keane (2009) 

Reinforcement 

Learning 

Learn optimal actions through interactions with an 

environment; suitable for sequential decision 

problems. 

Sutton and Barto 

(2018), Li (2017) 

Evolutionary 

Algorithms 

Population-based search methods inspired by natural 

evolution, effective for global optimization. 

Eiben and Smith 

(2015), Jin (2011) 

Deep Learning Multi-layered neural networks model complex patterns 

for tasks like feature selection and hyperparameter 

tuning. 

Goodfellow et al. 

(2016), Wang et al. 

(2020) 

Hybrid Methods 

(ML + Traditional 

Optimization) 

Integration of ML models within traditional 

optimization (e.g., ML surrogates assist evolutionary 

or gradient methods). 

Jin (2011), Emmerich 

and Deutz (2018) 

Meta-Learning Models learn to adapt quickly to new optimization 

tasks by leveraging prior knowledge (learning to learn). 

Hospedales et al. 

(2021) 

Bayesian 

Optimization 

Probabilistic optimization technique ideal for 

expensive black-box functions; balances exploration 

and exploitation. 

Shahriari et al. (2016) 

Neural Architecture 

Search (NAS) 

Automates the design of deep neural network 

architectures, often using RL or evolutionary 

strategies. 

Elsken et al. (2019) 

 

Table 1 provides a structured overview of major machine learning (ML) techniques that have been 

applied to solve complex optimization problems across various domains. Each row highlights a specific 

ML method, describing its primary function in the context of optimization and citing key references 

that have contributed to the development or application of these techniques. The table begins with 

Supervised Learning, which uses labelled datasets to predict outcomes and guide optimization 

processes, particularly in surrogate modeling and constraint approximation. Foundational work by 

Goodfellow et al. (2016) and Forrester and Keane (2009) are noted as key contributions in this area.  

Next, Reinforcement Learning is described as a method where agents learn optimal behaviors through 

environmental interactions, making it especially suitable for sequential decision-making problems. 

Sutton and Barto (2018) and Li (2017) are highlighted as seminal references for this field. Evolutionary 
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Algorithms, including genetic algorithms and related techniques, are population-based search strategies 

inspired by natural evolution, effective in solving global optimization problems with rugged search 

landscapes. This is supported by the work of Eiben and Smith (2015) and Jin (2011). 

Deep Learning is positioned as an approach that uses multi-layered neural networks to model complex 

patterns and relationships, particularly benefiting feature selection, hyperparameter tuning, and tasks 

involving large-scale data. Key references include Goodfellow et al. (2016) and Wang et al. (2020). 

Hybrid Methods, which integrate ML models with traditional optimization strategies, are described 

next. These methods combine the flexibility of machine learning with the mathematical rigor of 

classical optimization, with examples from Jin (2011) and Emmerich and Deutz (2018). The table also 

includes Meta-Learning, where models are trained to adapt quickly to new optimization tasks by 

leveraging prior learning experiences, as reviewed by Hospedales et al. (2021). Bayesian Optimization 

is presented as a probabilistic model-based optimization method, ideal for expensive black-box 

functions where evaluations are costly, balancing exploration and exploitation. Shahriari et al. (2016) 

provide important insights into this approach. Finally, Neural Architecture Search (NAS) is described 

as an automated process for designing deep neural networks, often utilizing reinforcement learning or 

evolutionary strategies to find optimal architectures, with Elsken et al. (2019) as a key reference. 

Overall, Table 1 encapsulates the diversity and depth of machine learning techniques applied to 

optimization problems, showing how different approaches are suited to different challenges depending 

on the problem characteristics and domain requirements. 

 
Fig. 1. Overview of Machine Learning Techniques for Optimization 

 

Fig. 1 presents a horizontal bar chart summarizing the main machine learning (ML) techniques applied 

to optimization problems. Each bar corresponds to a specific ML method discussed in Table 1, 

illustrating their relative importance and presence in optimization research and applications. The figure 

shows that all techniques Supervised Learning, Reinforcement Learning, Evolutionary Algorithms, 

Deep Learning, Hybrid Methods, Meta-Learning, Bayesian Optimization, and Neural Architecture 

Search (NAS) are equally represented. This uniform representation emphasizes that no single method 

dominates the field universally; instead, each contributes uniquely depending on the problem's 

complexity, dimensionality, and dynamic nature. For instance, supervised learning provides predictive 

capabilities crucial for surrogate modeling, while reinforcement learning is pivotal for sequential 

decision problems in dynamic environments. Similarly, evolutionary algorithms excel in exploring 

large, rugged search spaces, and deep learning aids in modeling high-dimensional and nonlinear 

relationships. 

The inclusion of recent advancements such as Meta-Learning, Bayesian Optimization, and NAS reflects 

the growing interest in automating and accelerating the optimization process. Meta-learning enables 

rapid adaptation to new tasks, Bayesian optimization efficiently handles expensive evaluations, and 
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NAS automates deep network design all contributing to making optimization more autonomous and 

scalable. The balanced distribution in Figure 1 highlights the evolving ecosystem where traditional ML 

methods and cutting-edge innovations coexist, offering versatile and powerful solutions to increasingly 

complex optimization challenges across various domains. 

 
 

3. Applications Across Various Domains 
 

Machine learning has significantly transformed engineering and manufacturing sectors by enhancing 

design optimization, predictive maintenance, and supply chain management. In design optimization, 

ML techniques such as surrogate modeling and reinforcement learning are employed to accelerate 

complex simulations and discover innovative design solutions (Wang et al., 2020). Predictive 

maintenance, powered by supervised learning models like random forests and support vector machines, 

enables early detection of machine failures, thereby reducing downtime and maintenance costs (Zhao 

et al., 2019). Moreover, supply chain management has benefited from ML-driven demand forecasting 

and inventory optimization, improving operational efficiency and responsiveness, as highlighted by 

Choi et al. (2018). These applications have enabled manufacturers to shift from reactive to proactive 

strategies, ensuring higher productivity and competitiveness. For example, deep learning-based models 

have been used to predict quality outcomes in manufacturing processes, allowing real-time adjustments 

to parameters (Liu et al., 2018). Evolutionary algorithms combined with ML surrogates have also 

facilitated multi-objective optimization in product design, balancing performance, cost, and 

sustainability. Overall, the integration of ML techniques has led to smarter, more resilient engineering 

systems. 

In healthcare, machine learning has been pivotal in optimizing medical diagnosis, treatment planning, 

and resource allocation. Diagnostic optimization leverages supervised learning models, such as 

convolutional neural networks (CNNs), to analyze medical images and detect diseases with high 

accuracy, often outperforming traditional diagnostic approaches (Esteva et al., 2017). For treatment 

planning, reinforcement learning algorithms have been utilized to personalize treatment strategies based 

on patient-specific data, optimizing outcomes in chronic disease management (Yu et al., 2019). 

Resource allocation in healthcare systems has also seen improvements through ML, particularly in 

hospital management and emergency response optimization. Predictive models are used to forecast 

patient admission rates, optimize bed allocation, and allocate medical staff efficiently (Rajkomar et al., 

2019). Furthermore, unsupervised learning techniques have helped identify hidden patterns in patient 

data, aiding in early intervention strategies and improving overall healthcare delivery. 

In the energy sector, machine learning applications have become essential for smart grid optimization, 

energy storage management, and renewable energy forecasting. Smart grid optimization relies on ML 

techniques such as reinforcement learning and deep neural networks to manage dynamic electricity 

flows, integrate distributed energy resources, and enhance grid stability (Wang et al., 2019). For energy 

storage systems, predictive models based on supervised learning help optimize charge-discharge cycles, 

prolonging battery life and improving cost-effectiveness (Zhang et al., 2020). Renewable energy 

forecasting is another critical application where ML models predict solar and wind power generation 

based on weather data and historical trends. Studies by Hong et al. (2016) have demonstrated that ML-

based forecasting significantly improves accuracy compared to traditional statistical methods, 

facilitating better grid integration of renewable sources. These advancements contribute to a more 

resilient, efficient, and sustainable energy infrastructure. 

Machine learning has deeply impacted the financial industry, particularly in portfolio optimization, 

fraud detection, and algorithmic trading. In portfolio optimization, ML algorithms such as deep 

reinforcement learning and evolutionary strategies dynamically adjust asset allocations in response to 

market changes, achieving superior returns compared to static models (Fischer, 2018). Fraud detection 

benefits from anomaly detection techniques and supervised learning models that identify suspicious 

transactions in real-time, reducing financial risks (Ngai et al., 2011). Algorithmic trading, where 

machine learning models predict market movements and execute trades automatically, has seen 

significant growth. Deep learning models and Bayesian optimization techniques have been used to fine-

tune trading algorithms, optimizing execution speed, and profitability (Dixon et al., 2020). These 
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applications have revolutionized financial markets by introducing greater efficiency, accuracy, and 

adaptability in decision-making processes. 

Transportation and logistics have embraced machine learning for routing optimization, traffic 

management, and autonomous vehicle development. Routing optimization, particularly in logistics and 

delivery services, leverages ML algorithms to find the most efficient paths, considering real-time traffic 

conditions, delivery windows, and vehicle capacities (Li et al., 2019). Traffic management systems 

employ predictive models to forecast congestion and dynamically adjust traffic signals, improving flow 

and reducing delays (Lv et al., 2015). Autonomous vehicles represent one of the most advanced 

applications of ML in transportation. Deep learning, reinforcement learning, and sensor fusion 

techniques enable vehicles to perceive their environment, make driving decisions, and navigate safely 

(Bojarski et al., 2016). These innovations not only enhance transportation efficiency but also contribute 

to safety, energy savings, and environmental sustainability in urban mobility systems. 

 

Table 2. Machine Learning Applications Across Domains 

Domain Key Applications 

Engineering and 

Manufacturing 

Design optimization, predictive maintenance, supply chain management 

Healthcare Medical diagnosis optimization, treatment planning, resource allocation 

Energy Systems Smart grid optimization, energy storage management, renewable energy 

forecasting 

Finance Portfolio optimization, fraud detection, algorithmic trading 

Transportation and 

Logistics 

Routing optimization, traffic management, autonomous vehicles 

 

Table 2 outlines the major application areas of machine learning (ML) across five key industrial and 

societal domains, summarizing how ML is being utilized to address critical optimization challenges in 

each field. In Engineering and Manufacturing, machine learning supports design optimization, enabling 

engineers to explore innovative designs rapidly by using predictive models and surrogate-assisted 

optimization methods. Predictive maintenance uses supervised learning algorithms to anticipate 

equipment failures, thereby reducing downtime and maintenance costs. Furthermore, supply chain 

management leverages ML for accurate demand forecasting and inventory control, improving 

operational efficiency and reducing wastage. In the Healthcare domain, ML contributes to medical 

diagnosis optimization by enhancing the accuracy and speed of disease detection through techniques 

like deep learning on medical images. Treatment planning benefits from reinforcement learning 

strategies that personalize care based on individual patient data. Additionally, ML models assist in 

resource allocation, predicting patient inflow and optimizing the use of medical facilities and personnel. 

Within Energy Systems, machine learning plays a crucial role in smart grid optimization, allowing real-

time control and balancing of distributed energy resources. Energy storage management is enhanced 

through predictive modeling of battery performance and life cycles, while renewable energy forecasting 

uses ML models to predict generation outputs from solar and wind sources, thereby stabilizing supply 

to the grid. The Finance sector applies machine learning in portfolio optimization, where adaptive 

algorithms dynamically adjust investment strategies in volatile markets. Fraud detection employs 

anomaly detection and classification algorithms to identify suspicious activities, safeguarding financial 

transactions. Moreover, algorithmic trading utilizes ML models to execute trades at optimal times based 

on predictive analytics, increasing profitability and minimizing risks. 

Lastly, in Transportation and Logistics, ML supports routing optimization, where dynamic algorithms 

find the most efficient delivery or travel routes considering traffic conditions and delivery constraints. 

Traffic management uses ML-based prediction models to optimize signal timings and reduce 

congestion. Furthermore, autonomous vehicles rely heavily on deep learning, reinforcement learning, 

and sensor data fusion to perceive environments, plan paths, and make real-time navigation decisions. 

Overall, Table 2 illustrates that while each domain applies machine learning to solve domain-specific 

challenges, the underlying objective remains consistent: improving efficiency, accuracy, and 

adaptability through intelligent optimization and decision-making processes. 
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Fig. 2. Number of Key Applications Per Domain 

 

Fig. 2 illustrates the distribution of the number of key machine learning applications across five major 

domains: Engineering and Manufacturing, Healthcare, Energy Systems, Finance, and Transportation 

and Logistics. Each domain is associated with three primary applications, highlighting a balanced 

breadth of machine learning implementation across diverse sectors. The chart reveals that despite the 

differences in industrial characteristics and technological demands, machine learning has found equally 

significant roles in each domain. In Engineering and Manufacturing, ML enhances design optimization, 

predictive maintenance, and supply chain management. Similarly, in Healthcare, ML contributes to 

diagnosis optimization, treatment planning, and resource allocation. Energy Systems utilize ML for 

smart grid control, energy storage management, and renewable forecasting, while Finance leverages 

ML in portfolio optimization, fraud detection, and algorithmic trading. Transportation and Logistics 

apply ML for routing optimization, traffic management, and the advancement of autonomous vehicles. 

The consistent number of key applications across domains suggests that machine learning is universally 

adaptable and versatile in solving complex optimization problems, regardless of the domain-specific 

challenges. This universality also indicates a mature stage of ML integration across industries, where 

innovative and intelligent systems are becoming essential to maintaining operational efficiency, 

competitiveness, and resilience in rapidly evolving environments. 

 

Table 3. ML Techniques and Impact Across Domains 

Domain ML Techniques Used Impact 

Engineering 

and 

Manufacturing 

Supervised Learning, Deep Learning, 

Reinforcement Learning 

Accelerated design, reduced downtime, 

improved supply chain responsiveness 

Healthcare CNNs, Reinforcement Learning, 

Predictive Modeling 

Improved diagnostic accuracy, 

personalized treatment, efficient resource 

use 

Energy 

Systems 

Reinforcement Learning, Supervised 

Learning, Deep Learning 

Enhanced grid stability, prolonged storage 

life, accurate renewable forecasting 

Finance Deep Reinforcement Learning, 

Anomaly Detection, Bayesian 

Optimization 

Higher returns, real-time fraud detection, 

efficient trading strategies 

Transportation 

and Logistics 

Reinforcement Learning, Deep 

Learning, Sensor Fusion 

Optimized routes, reduced congestion, 

advanced autonomous navigation 

 

Table 3 summarizes the relationship between specific machine learning (ML) techniques and their 

impacts across five major application domains. It highlights not only the methods most commonly 

adopted in each sector but also the tangible benefits realized through their implementation. In 

Engineering and Manufacturing, Supervised Learning, Deep Learning, and Reinforcement Learning are 

predominantly utilized. These techniques have enabled accelerated design processes, reduced system 

downtime through predictive maintenance, and enhanced supply chain responsiveness by improving 
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forecasting and resource optimization. The use of deep learning models for predictive quality control 

and reinforcement learning for process optimization reflects a shift towards intelligent, adaptive 

manufacturing systems. In the Healthcare sector, Convolutional Neural Networks (CNNs), 

Reinforcement Learning, and Predictive Modeling have led to improved diagnostic accuracy, 

personalized treatment strategies, and more efficient resource utilization. CNNs are particularly 

effective in image-based diagnostics, while reinforcement learning models dynamically adjust 

treatment plans based on evolving patient data, resulting in more responsive and effective healthcare 

delivery. 

For Energy Systems, a combination of Reinforcement Learning, Supervised Learning, and Deep 

Learning techniques has driven enhanced grid stability, prolonged storage system life, and more 

accurate renewable energy forecasting. These improvements are critical for integrating intermittent 

renewable sources into energy grids, supporting the global transition to sustainable energy 

infrastructures. In Finance, Deep Reinforcement Learning, Anomaly Detection, and Bayesian 

Optimization are leveraged to achieve higher investment returns, real-time fraud detection, and greater 

trading efficiency. Deep learning models capture complex market patterns, while anomaly detection 

mechanisms provide critical insights into unusual transaction behaviors, reducing financial risks. 

Finally, Transportation and Logistics benefit from Reinforcement Learning, Deep Learning, and Sensor 

Fusion techniques, leading to optimized routing, reduced congestion, and advanced autonomous 

navigation capabilities. Reinforcement learning optimizes traffic flow and delivery logistics, while 

sensor fusion techniques in autonomous vehicles enhance environmental perception and decision-

making accuracy, improving both safety and operational efficiency. Overall, Table 3 underscores that 

the strategic adoption of specific ML techniques directly correlates to measurable, domain-specific 

improvements, illustrating the versatility and transformative power of machine learning across various 

industries. 

 

 

 
Fig. 3. Distribution of ML Techniques Across Domains 

 

Fig. 3 presents a pie chart illustrating the distribution of various machine learning (ML) techniques 

utilized across different application domains. The chart provides insights into the relative frequency of 

each ML method's application and highlights which techniques are most widely adopted for 

optimization tasks in diverse sectors. The figure shows that Reinforcement Learning is the most 

prominent technique, accounting for 25% of the total distribution. This emphasizes its versatility and 

effectiveness, particularly in dynamic and sequential decision-making problems common across 

engineering, energy systems, finance, and transportation sectors. Reinforcement learning’s ability to 

continuously adapt policies based on environmental feedback makes it particularly suited for real-time 

optimization challenges. Supervised Learning and Deep Learning each represent 16.7% of the 

distribution, reflecting their strong presence in domains such as manufacturing (for predictive 
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maintenance and quality control) and healthcare (for diagnosis and treatment prediction). These 

techniques are fundamental for tasks involving pattern recognition, classification, and regression 

modeling where historical data are available. 

Other methods, including CNNs (Convolutional Neural Networks), Predictive Modeling, Anomaly 

Detection, Bayesian Optimization, and Sensor Fusion, each contribute 8.3%. Although their individual 

shares are smaller, these techniques play critical niche roles: CNNs excel in image-based diagnosis, 

anomaly detection is vital for fraud prevention, Bayesian optimization is valuable for expensive black-

box optimizations (e.g., hyperparameter tuning), and sensor fusion is essential in autonomous systems 

for environment perception. Overall, the distribution in Figure 3 highlights a balanced ecosystem where 

a variety of ML techniques are deployed depending on the specific requirements and complexities of 

the application domains. It suggests that while reinforcement learning leads in versatility, specialized 

techniques maintain crucial importance for targeted problems, ensuring that machine learning continues 

to evolve and adapt to a wide range of optimization challenges. 

 
 

4. Conclusion 
 

This article has explored the critical role of machine learning (ML) techniques in solving complex 

optimization problems across a variety of domains, including engineering and manufacturing, 

healthcare, energy systems, finance, and transportation and logistics. By analyzing the distribution and 

impact of different ML methods, several important findings and novel insights have been identified.  

Firstly, it was observed that each domain applied ML to at least three key optimization tasks, indicating 

a uniform breadth of adoption across sectors. In particular, reinforcement learning emerged as the most 

widely utilized technique, accounting for 25% of all applications, followed by supervised learning and 

deep learning, each representing 16.7% of the distribution. Specialized methods such as convolutional 

neural networks (CNNs), predictive modeling, anomaly detection, Bayesian optimization, and sensor 

fusion collectively contributed 41.6%, highlighting the increasing diversity of ML strategies tailored to 

domain-specific challenges. Secondly, the findings underline a clear shift from traditional static 

optimization methods toward dynamic, adaptive, and data-driven approaches. For example, the 

integration of reinforcement learning in dynamic energy management, and the use of deep learning for 

medical diagnosis optimization, demonstrate how ML enhances real-time decision-making capabilities 

and operational resilience. Furthermore, the use of emerging techniques such as neural architecture 

search and meta-learning shows that the landscape of optimization is evolving toward greater 

automation, self-adaptation, and scalability. The novelty of this review lies in its comprehensive cross-

domain perspective, combining quantitative analysis of ML technique distribution with qualitative 

assessment of their operational impacts. While previous works often focus on single domains or narrow 

technical aspects, this article provides a holistic mapping that bridges different industries, 

methodologies, and optimization challenges. In conclusion, machine learning has firmly established 

itself as a transformative technology for complex optimization problems. Its future development will 

likely focus on increasing interpretability, robustness under uncertainty, real-time adaptability, and 

cross-domain transferability. As industries continue to embrace digitalization and intelligent 

automation, the strategic deployment of ML optimization techniques will become not just advantageous 

but essential for sustained innovation and competitiveness. 
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