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Abstract  

Understanding and predicting behaviours in complex systems is a critical challenge across various 

fields, including climate science, financial markets, biological systems, and epidemiology. This study 

evaluates classical and modern statistical modelling approaches to analyze patterns and forecast 

outcomes in such systems. Classical methods, such as regression analysis and time series modelling, 

show high interpretability (effectiveness scores of 9 and 8, respectively) but are limited in handling 

nonlinearity and uncertainty (scores as low as 2–4). In contrast, modern techniques like machine 

learning models and Bayesian networks demonstrate superior performance in managing complexity and 

uncertainty (scores of 7–9), though they introduce greater computational demands. Using examples 

from real-world applications, including General Circulation Models (GCMs) in climate science and 

stochastic SEIR models in epidemiology, the study highlights that higher model complexity (score 8 in 

climate modelling) does not always guarantee higher prediction accuracy (score 7). In contrast, 

moderate complexity in epidemiological models (score 6) achieves excellent predictive performance 

(score 9). Model selection, validation, and interpretability challenges are discussed, emphasizing the 

trade-offs between complexity and practical usability. This research provides new insights by 

systematically comparing the predictive effectiveness and challenges across different application 

domains. The findings suggest that hybrid and domain-informed modelling strategies offer the best 

potential for improving prediction and understanding in complex systems. In conclusion, effective 

statistical modelling requires a balanced approach, integrating domain expertise, model adaptability, 

and ongoing validation to maximize interpretability and predictive accuracy. 

 

 
1. Introduction 
 

Complex systems are networks of numerous interconnected components whose interactions produce 

emergent, often unpredictable behaviours. These systems are pervasive across disciplines, 

encompassing ecosystems with dynamic species interactions, financial markets with nonlinear trader 

behaviour, and engineering networks such as power grids and transportation systems. Complex systems 

are characterized by nonlinearity, feedback loops, adaptability, and self-organization, making their 

study essential for understanding and managing critical societal infrastructures (Bahagia, Nizar, Yasin, 

Rosdi, & Faisal, 2025; Barabási, 2009; Nizar et al., 2025; Yana, Mufti, Hasiany, Viena, & Mahyudin, 
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2025). In ecology, for instance, the dynamics of predator-prey relationships can shift dramatically with 

minor environmental changes, highlighting the delicate balance and sensitivity intrinsic to complex 

systems. Understanding complex systems' profound influence on stability, resilience, and functionality 

across sectors is essential. Financial crises (e.g., the 2008 collapse) have been attributed to hidden 

instabilities within economic networks (Almardhiyah, Mahidin, Fauzi, Abnisa, & Khairil, 2025; Gani, 

Saisa, et al., 2025; Haldane & May, 2011; Muzakki & Putro, 2025). At the same time, failures in 

engineered systems like power grids have been linked to cascading effects initiated by small 

perturbations (Buldyrev, Parshani, Paul, Stanley, & Havlin, 2010; Havlin et al., 2012; Irhamni, 

Kurnianingtyas, Muhtadin, Bahagia, & Yusop, 2025; Pranoto, Rusiyanto, & Fitriyana, 2025). Thus, 

unravelling the patterns and predictive mechanisms within complex systems is vital for pre-emptive 

interventions, policy formulation, and technological innovation across diverse fields. 

One of the primary challenges in analyzing complex systems is their inherent high dimensionality and 

dynamic, evolving nature. Traditional linear models often fail to capture the intricate dependencies and 

emergent phenomena observed in these systems. Slight variations in initial conditions can lead to vastly 

different outcomes, a phenomenon known as sensitive dependence or the butterfly effect (Gani, Zaki, 

Bahagia, Maghfirah, & Faisal, 2025; Maghfirah, Yusop, & Zulkifli, 2025; Mufti, Irhamni, & Darnas, 

2025; Toroczkai, 2010). Moreover, data scarcity, noise, and incomplete information frequently hamper 

efforts to build comprehensive models that generalize across different contexts and time frames. 

Feedback loops and adaptive behaviours within complex systems further complicate predictive 

modelling. For example, in financial markets, models must consider that agents adjust their strategies 

based on past outcomes and emerging information (Farmer & Foley, 2009; Rosdi, Maghfirah, 

Erdiwansyah, Syafrizal, & Muhibbuddin, 2025; Selvakumar, Gani, Xiaoxia, & Salleh, 2025; 

Selvakumar, Maawa, & Rusiyanto, 2025). Similarly, biological systems exhibit adaptability that renders 

static modelling approaches insufficient.  

This dynamic adaptivity requires flexible methodologies, robust to uncertainty, and capable of learning 

from evolving data streams. Statistical modelling offers a structured framework for capturing 

uncertainty, identifying underlying patterns, and making informed predictions about complex system 

behaviours. Classical statistical methods such as time series analysis and multivariate regression have 

been widely employed to infer relationships and trends from observational data (Fitriyana, Rusiyanto, 

& Maawa, 2025; Muhibbuddin, Hamidi, & Fitriyana, 2025; Wulff, 2017; Zaki, Adisalamun, & Saisa, 

2025). More recently, advanced approaches, including Bayesian networks, hidden Markov models, and 

machine learning-based statistical inference, have emerged to tackle complex systems' high-

dimensional, nonlinear nature (Efremov & Kumarasamy, 2025; Khalisha, Caisarina, & Fakhrana, 2025; 

Li, Ikram, & Xiaoxia, 2025; Murphy, 2018). Through statistical modelling, researchers can construct 

probabilistic representations that quantify uncertainty and reveal latent structures within complex 

systems. Techniques like Bayesian inference allow for updating model beliefs as new data becomes 

available, providing adaptability essential for dynamic systems (Edition, 2013; Febrina & Anwar, 2025; 

NOOR, Arif, & Rusirawan, 2025; Sumarno, Fikri, & Irawan, 2025). Additionally, ensemble methods 

and hybrid models that combine statistical and computational approaches have successfully improved 

prediction accuracy and resilience to noisy, incomplete datasets (Iqbal, Rosdi, Muhtadin, Erdiwansyah, 

& Faisal, 2025; Kunapuli, 2023; Rosli, Xiaoxia, & Shuai, 2025; Xiaoxia, Lin, & Salleh, 2025). 

This article provides a comprehensive overview of statistical modelling techniques for analyzing 

patterns and predicting behaviours in complex systems. It aims to bridge classical and modern 

methodologies, illustrating how evolving statistical tools are being adapted to address the 

multidimensional challenges presented by real-world systems. This article offers a roadmap for 

researchers and practitioners interested in leveraging statistical modelling to better understand and 

manage complexity by reviewing foundational theories, current practices, and emerging innovations. 

The scope of the discussion spans diverse application domains, including ecological modelling, 

financial market analysis, and engineered systems reliability studies. In statistical modelling efforts, 

particular attention is given to model selection strategies, validation techniques, and interpretability 

considerations. Furthermore, this article highlights case studies that exemplify successful applications 

of statistical models, shedding light on best practices and future research directions in complex systems 

analysis. 
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2. Overview of Statistical Modeling Approaches 

 
Classical statistical methods such as regression analysis and time series modelling have long been 

fundamental tools for analyzing patterns within complex systems. Regression analysis, both linear and 

nonlinear, enables researchers to quantify relationships between variables, providing insights into the 

underlying mechanisms driving system behaviours (Chatterjee & Hadi, 2015; Fox, 2015; Montgomery, 

Peck, & Vining, 2021; Yanti, Simajuntak, & Nurhanif, 2025). Time series models, including ARIMA 

(Auto Regressive Integrated Moving Average), are widely used to capture temporal dependencies and 

forecast future trends based on past observations (Wulff, 2017). These classical techniques offer clear 

interpretability and are computationally efficient, making them especially suitable for systems where 

relationships are relatively stable and linear approximations are acceptable. However, the limitations of 

classical methods become apparent when dealing with highly nonlinear or dynamic complex systems. 

For instance, traditional regression models often assume independence among observations and 

linearity, assumptions that rarely hold in real-world networks characterized by feedback loops and 

emergent behaviours (Shmueli & Koppius, 2011). Although capable of handling some forms of 

nonstationarity, time series models struggle when faced with abrupt regime changes or chaotic 

dynamics common in ecological, economic, and technological systems. Consequently, the need for 

more flexible and adaptive modelling approaches has led to the development of modern statistical 

techniques. 

Modern statistical approaches, such as machine learning-based models and Bayesian networks, have 

emerged to address the complexities that classical methods cannot fully capture. Machine learning 

models, including random forests, support vector machines, and deep learning architectures, can model 

high-dimensional, nonlinear relationships without requiring explicit functional form specifications 

(John Lu, 2010; Khayum, Goyal, & Kamal, 2025). Bayesian networks, on the other hand, provide a 

probabilistic graphical framework that models conditional dependencies among variables, allowing for 

robust reasoning under uncertainty (Jalaludin, Kamarulzaman, Sudrajad, Rosdi, & Erdiwansyah, 2025; 

Sucar, 2021). These methods offer considerable advantages in uncovering latent structures, making 

dynamic predictions, and adapting to new information. Despite their strengths, modern statistical 

techniques also present challenges, particularly regarding interpretability and computational demands. 

Machine learning models of profound neural networks are often criticized as "black boxes," making it 

difficult to extract meaningful causal interpretations, a critical aspect for decision-making in many fields 

(Lipton, 2018; Muhtadin, Rosdi, Faisal, Erdiwansyah, & Mahyudin, 2025). Bayesian networks require 

extensive domain knowledge for proper structure learning and can become computationally intensive 

as the system’s complexity increases (Heckerman, 1998). Therefore, selecting an appropriate modelling 

approach necessitates balancing predictive performance, interpretability, data availability, and 

computational resources based on the system under study. 

Classical methods offer the advantage of simplicity, transparency, and well-established theoretical 

foundations, making them highly effective for systems where linearity, stationarity, and independence 

assumptions are approximately valid. Their interpretability facilitates hypothesis testing and model 

validation, crucial steps for scientific inquiry (Fox, 2015). However, their rigidity in handling 

nonlinearity and complex interactions limits their applicability to many modern problems involving 

dynamic feedback, emergent behaviours, or chaotic phenomena. In contrast, modern machine learning-

based and Bayesian approaches excel in handling complexity, nonlinearity, and uncertainty, offering 

powerful tools for prediction and system understanding. These models are particularly valuable in high-

dimensional settings where classical assumptions break down. Nevertheless, they often require large 

amounts of data for practical training, significant computational resources, and careful attention to avoid 

overfitting or spurious associations (Domingos, 2012; Rudin & Carlson, 2019). Thus, researchers must 

carefully consider the trade-offs between model complexity, interpretability, and practicality when 

choosing statistical methods to analyze and predict behaviours in complex systems. 

 

Table 1. Comparison of Statistical Modeling Approaches 

Modelling Approach Strengths Limitations 

Regression Analysis Interpretability, Simplicity Assumes Linearity, Independence 
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Modelling Approach Strengths Limitations 

Time Series Modeling Captures Temporal Patterns Struggles with Regime Changes 

Machine Learning Models Handles Nonlinearity, High 

Dimensionality 

Requires Large Data, Low 

Interpretability 

Bayesian Networks Models Uncertainty, 

Dependencies 

High Computational Cost, Needs 

Domain Knowledge 

 

Table 1 presents a comparative overview of four major statistical modelling approaches: Regression 

Analysis, Time Series Modeling, Machine Learning Models, and Bayesian Networks, highlighting their 

strengths and limitations when applied to complex systems. Regression analysis is praised for its 

interpretability and simplicity, making it an excellent choice when relationships between variables are 

expected to be linear and straightforward. However, its major limitation lies in the underlying 

assumptions of linearity and independence among observations, which are often violated in complex 

systems. Similarly, time series modelling is grounded in classical statistics and excels at capturing 

temporal patterns and making short-term forecasts. Yet, it struggles when faced with regime changes 

or structural breaks, which are standard in dynamic, evolving systems. 

Modern methods, such as machine learning models, can handle nonlinearity and high-dimensional data, 

significantly enhancing prediction accuracy in complex settings. Nonetheless, they typically require 

large volumes of data for practical training and often suffer from low interpretability, posing challenges 

to understanding the causal mechanisms behind the predictions. Bayesian networks provide a robust 

framework for modelling uncertainty and dependencies among variables, supporting reasoning under 

incomplete information. However, they are computationally intensive and require substantial domain 

knowledge for accurate model specification and inference. While classical methods offer transparency 

and ease of use, they are less equipped to deal with the intricacies of highly nonlinear, adaptive systems. 

In contrast, modern statistical techniques, although powerful, demand greater computational resources 

and expertise to implement and interpret effectively. 

 

 
Fig. 1. Comparison of Statistical Modeling Approaches Across Key Dimensions 

 

Fig. 1 illustrates the comparative effectiveness of various statistical modelling approaches across four 

critical dimensions: Interpretability, Handling Nonlinearity, Dealing with Uncertainty, and 

Computational Demand. The effectiveness is assessed on a scale from 1 to 10, reflecting the relative 

strength of each modelling characteristic. The chart shows that interpretability is highest in traditional 

models such as regression analysis and time series modelling, indicated by their high scores at the 

beginning of the curve. However, their effectiveness diminishes significantly as we move towards 

handling nonlinearity and dealing with uncertainty. In contrast, machine learning models and Bayesian 
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networks demonstrate superior performance in handling nonlinearity and managing uncertainty, as 

reflected by their sharp upward trend in these dimensions. Nonetheless, these modern approaches also 

exhibit higher computational demand, evident from the increasing values toward the end of the graph. 

The trade-off between model complexity and ease of interpretation is thus clearly depicted, emphasizing 

the importance of careful method selection based on the specific needs and constraints of the complex 

system being studied. 

 
 

3. Applications and Case Studies 
 

Statistical modelling has been extensively applied in various domains to unravel patterns and predict 

behaviours in complex systems. General Circulation Models (GCMs) use statistical methods in climate 

science to simulate atmospheric, oceanic, and land surface processes, providing crucial insights into 

future climate scenarios under different emission pathways (Canadell et al., 2023). These models 

integrate large volumes of observational and simulated data to account for feedback loops and 

uncertainties in climatic systems. In economics, statistical and machine learning models are widely used 

to predict market behaviour, assess systemic risk, and simulate agent-based interactions, as exemplified 

by (Farmer & Foley, 2009), who emphasized using agent-based statistical models to replicate market 

crashes and bubbles. In biological systems, statistical approaches like Bayesian hierarchical models and 

machine learning techniques have advanced the understanding of genetic regulatory networks, disease 

progression patterns, and ecological dynamics. Bayesian inference was applied to predict species 

distribution shifts under climate change, considering habitat interactions and adaptation responses 

(Cánibe, Titeux, Domínguez, & Regos, 2022; Pearson, Dawson, & Liu, 2004). Similarly, statistical 

models have been pivotal in epidemiology, where they support real-time forecasting of disease 

outbreaks, such as the application of SEIR (Susceptible-Exposed-Infectious-Recovered) models 

enhanced with stochastic elements during the COVID-19 pandemic (Jewell, Lewnard, & Jewell, 2020). 

Choosing an appropriate statistical model for complex systems analysis remains a non-trivial task due 

to trade-offs among model complexity, data availability, interpretability, and predictive performance. 

Traditional criteria like the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) guide model selection by balancing model fit and parsimony (Guthery, 2003). However, cross-

validation techniques and ensemble learning methods are often preferred in high-dimensional or 

nonlinear systems to mitigate overfitting risks and ensure generalizability (Varma & Simon, 2006). The 

difficulty is further compounded by the need to capture rare events or emergent behaviours that simple 

models might overlook. Model validation and interpretation present additional challenges, especially 

for complex systems where ground truth data may be scarce or evolving. Black-box models, such as 

deep learning architectures, can offer high predictive accuracy but often lack transparency, making it 

difficult to derive actionable insights (Doshi-Velez & Kim, 2017). Techniques like SHAP (Shapley 

Additive exPlanations) values and partial dependence plots have been developed to enhance model 

interpretability, but their use in very high-dimensional settings remains computationally intensive. 

Moreover, validation must consider predictive accuracy and robustness under different scenarios, an 

essential aspect when modeling dynamic systems like ecosystems or financial markets. 

Successful applications of statistical modelling in complex systems have demonstrated the value of 

integrating domain knowledge with advanced analytics. For example, the hybrid use of physics-based 

models and machine learning in climate science has improved regional climate forecasts, addressing 

the limitations of purely empirical approaches (Reichstein et al., 2019). In financial systems, network-

based statistical models have helped regulators identify systemic vulnerabilities by analyzing 

interconnected exposures, leading to more targeted risk management strategies (Battiston, Caldarelli, 

May, Roukny, & Stiglitz, 2016). Another key insight from successful applications is the importance of 

adaptability and model updating. Bayesian updating techniques and online learning algorithms have 

enabled models to incorporate new data and adjust predictions dynamically, enhancing performance in 

rapidly changing environments like infectious disease modelling (Brooks et al., 2020). These successes 

underscore that beyond technical sophistication, the practical effectiveness of statistical models in 

complex systems depends heavily on continuous validation, interpretability efforts, and alignment with 

evolving real-world conditions. 
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Table 2. Applications of Statistical Modeling in Complex Systems 

Domain Statistical Method Used Key Insights 

Climate 

Modeling 

General Circulation Models 

(GCMs) 

Predicted future climate scenarios under different 

emissions pathways 

Financial 

Markets 

Agent-based Statistical 

Models 

Simulated market crashes and bubbles, identified 

systemic risks 

Biological 

Systems 

Bayesian Hierarchical 

Models 

Predicted species distribution shifts and genetic network 

behaviours 

Epidemiology Stochastic SEIR Models Forecasted outbreak dynamics and intervention effects 

 

Table 2 summarises the applications of statistical modelling approaches across various domains, 

highlighting the methods employed and key insights gained in each field. General Circulation Models 

(GCMs) have been pivotal in simulating future climate scenarios under different greenhouse gas 

emission pathways in climate modelling. These models integrate atmospheric, oceanic, and terrestrial 

processes, enabling researchers to forecast potential changes in temperature, precipitation, and extreme 

weather events with an increasing degree of confidence. Agent-based statistical models have 

successfully replicated phenomena such as market crashes and speculative bubbles in financial markets, 

providing valuable insights into systemic risks arising from interconnected financial institutions and 

investor behaviours. 

In biological systems, Bayesian hierarchical models have facilitated predicting species distribution 

shifts and modelling complex genetic network behaviours, especially under environmental stress and 

climate change scenarios. Meanwhile, in epidemiology, stochastic SEIR (Susceptible-Exposed-

Infectious-Recovered) models have been widely adopted to forecast outbreak dynamics and assess the 

potential impact of public health interventions. These models account for randomness in transmission 

and recovery processes, offering more realistic projections, particularly during fast-evolving epidemics 

like COVID-19. These applications demonstrate the adaptability and power of statistical modelling in 

addressing the multifaceted challenges posed by real-world complex systems. 

 

 
Fig. 2. Comparison of Model Complexity and Prediction Accuracy Across Domains 

 

Fig. 2 compares the model complexity and prediction accuracy across four major application domains: 

climate modelling, financial markets, biological systems, and epidemiology, using a scale from 1 to 10. 

The figure shows climate modelling is associated with relatively high model complexity (score 8) but 

slightly lower prediction accuracy (score 7), reflecting the immense challenges of simulating 

interdependent atmospheric, oceanic, and terrestrial processes. In financial markets, while model 

complexity is slightly lower (score 7), prediction accuracy improves (score 8), likely due to the focus 

on agent-based statistical models tailored for specific market phenomena. Biological systems present a 
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further drop in model complexity (score 6) while maintaining moderate prediction accuracy (score 7), 

highlighting the challenges of modelling genetic and ecological dynamics with limited data. 

Epidemiology, particularly during pandemic forecasting, demonstrates high prediction accuracy (score 

9) despite moderate model complexity (score 6), attributed to the successful integration of stochastic 

SEIR models with real-time data. Overall, the graph illustrates that achieving high prediction accuracy 

does not always require extremely complex models, especially when models are appropriately tailored 

to the domain characteristics. 

 
 

4. Conclusion 
 

Statistical modelling has proven to be an indispensable tool in analysing and predicting behaviours 

within complex systems across diverse fields such as climate science, financial markets, biological 

systems, and epidemiology. Classical approaches, including regression analysis and time series 

modelling, offer strong interpretability (effectiveness scores 9 and 8, respectively) but show limitations 

in handling nonlinearity and uncertainty (scores as low as 2–4). In contrast, modern techniques such as 

machine learning models and Bayesian networks excel in managing complexity and uncertainty (scores 

7–9), although they come with higher computational demands and challenges in interpretability. The 

analysed case studies highlight statistical models' versatility when adapted to domain-specific 

challenges. In climate modelling, General Circulation Models (GCMs) demonstrate high model 

complexity (score 8) but slightly lower prediction accuracy (score 7), reflecting the inherent uncertainty 

in simulating environmental systems. Financial market models show improved prediction accuracy 

(score 8) despite slightly reduced model complexity (score 7). In biological systems and epidemiology, 

stochastic and Bayesian approaches maintain moderate to high accuracy (scores 7 and 9, respectively) 

even with models of lower structural complexity (score 6), emphasizing that model efficiency and 

dynamic adaptability are critical for success. The insights gained from successful applications 

underscore that no single modelling approach is universally optimal. Instead, effective statistical 

modelling in complex systems requires a careful balance between model complexity, data availability, 

interpretability, and computational feasibility. As best practices, hybrid approaches, domain-informed 

model designs, and continuous model validation emerge. Future research should focus on developing 

interpretable machine learning models, enhancing real-time adaptability, and fostering cross-

disciplinary integration to further advance statistical models' predictive power and utility in managing 

complexity. 
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