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Abstract 

Modelling and simulation have become indispensable tools across various scientific and engineering 

domains, supporting design optimization, risk evaluation, and policy decision-making. However, the 

increasing reliance on simulation outcomes necessitates rigorous verification and validation (V&V) to 

ensure model credibility, especially in high-impact fields such as aerospace, biomedicine, climate 

modelling, and defence. This study aims to review, compare, and synthesize contemporary V&V 

techniques and evaluate their practical effectiveness through domain-specific applications. Using a 

structured comparative methodology, we analyze core V&V practices, including code review, formal 

verification, experimental validation, predictive validation, and uncertainty quantification. A usage 

intensity scale (1–10) was introduced to quantify technique adoption, revealing that experimental data 

comparison is the most frequently applied method (9/10), followed by code review and uncertainty 

quantification (both 8/10). Case studies show that aerospace and defence domains report the highest 

V&V impact, with confidence gain and decision support rated at 9/10. At the same time, biomedical 

and climate modelling demonstrate slightly lower scores due to biological variability and system 

complexity. The novelty of this study lies in presenting an integrated cross-domain V&V framework 

and in highlighting the growing need for adaptive, hybrid validation methods tailored for emerging AI-

driven and data-intensive models. Despite evident benefits, enhanced confidence, reduced costs, and 

improved decision-making challenges remain, particularly in novel simulation environments with 

limited validation data. In conclusion, this article reinforces the critical role of V&V in ensuring 

simulation reliability and calls for innovation in V&V strategies to match the evolving complexity of 

modern simulation systems. 

 

 
 

1. Introduction 
 

Modeling and Simulation (M&S) has become indispensable in various engineering and scientific fields, 

including aerospace engineering, systems biology, manufacturing, and environmental sciences. As 

systems become complex, the reliance on simulations to support design decisions, risk assessments, and 

policymaking intensifies. This reliance brings forth a critical need for simulation results to be 

trustworthy, reproducible, and scientifically credible (Sargent, 2010). The sophistication of the model 

or the power of the computing platform does not inherently guarantee the accuracy and reliability of 
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simulations. Instead, they are contingent upon rigorous Validation and Verification (V&V) processes. 

Verification addresses the question: “Are we building the model, right?” focusing on correctly 

implementing the model's conceptual description into code or a simulation platform. In contrast, 

Validation answers: “Are we building the right model?” assessing whether the model accurately 

represents the real-world system or phenomenon it intends to simulate (Roache, 1998). 

Despite their conceptual distinctions, validation and verification are interdependent and collectively 

determine the credibility of simulation outcomes. Neglecting either aspect may lead to erroneous 

predictions, misinformed decisions, or costly failures in real-world applications, as documented in 

various high-stakes industries (Schwer, 2007, 2009; Thacker et al., 2004). Recent technological 

progress has led to increasingly complex systems in engineering and science, where physical 

experimentation is often costly, time-consuming, or impractical. In this context, modelling and 

simulation (M&S) have emerged as powerful surrogates for experimentation, enabling researchers and 

engineers to analyze system behaviour, evaluate design alternatives, and predict performance under 

varying conditions. Applications range from simulating aerodynamic performance in aerospace systems 

to evaluating epidemic spread in healthcare modelling. As simulation-based approaches become central 

to decision-making, ensuring these models produce trustworthy and accurate outputs becomes 

paramount. 

However, building a model is only one aspect of the simulation process. The greater challenge lies in 

demonstrating that the model behaves as intended and accurately reflects the real-world system it aims 

to represent. A rigorous discipline has emerged around Verification and Validation (V&V) to formalize 

this process. These practices are now embedded in industry standards, regulatory protocols, and 

research methodologies across domains. Numerous studies have underscored that insufficient V&V can 

lead to significant failures, whether through design flaws in engineered systems, misguidance in policy 

simulations, or faulty predictions in safety-critical applications (Oberkampf & Roy, 2010; Thacker et 

al., 2004; WANG, Lin, & YUAN, 2010). This article aims to provide a comprehensive overview of 

widely accepted V&V techniques, highlighting their roles in ensuring accuracy in simulation models. 

We review classical and emerging methodologies, discuss practical implementations in selected 

domains, and explore future directions shaped by advances in artificial intelligence and uncertainty 

quantification. The scope is intended for researchers, engineers, and practitioners seeking to enhance 

the fidelity and robustness of their modelling practices through systematic validation and verification. 

 
 

2. Fundamentals of Validation and Verification (V&V) 

 
The credibility of a modelling and simulation system hinges on two fundamental processes: Verification 

and Validation. Though often discussed together, these processes serve distinct purposes and occur at 

different stages of the simulation lifecycle. Verification confirms that the model has been implemented 

correctly within the simulation environment. It seeks to answer the question: “Are we building the 

model, right?” This step involves checking the model's internal consistency, ensuring that the 

algorithms, numerical methods, and code logic are functioning as intended. Standard techniques include 

code inspections, software debugging, consistency checks, sensitivity analysis, and convergence 

testing. The need for order-of-accuracy verification, which uses grid refinement and error estimation to 

verify numerical solutions' fidelity, is emphasized in previous work (NOOR, Arif, & Rusirawan, 2025; 

Roache, 1998; Sumarno, Fikri, & Irawan, 2025). Errors at this stage typically stem from programming 

bugs, discretization errors, incorrect boundary conditions, or misused algorithms (Febrina & Anwar, 

2025; Rosli, Xiaoxia, & Shuai, 2025; Sargent, 2010). 

On the other hand, Validation refers to the process of determining the degree to which a model 

accurately represents the real-world system it is intended to simulate. This process answers the question: 

“Are we building the right model?” Validation often involves comparing simulation outputs to 

empirical data from experiments, historical datasets, or expert knowledge. Validation requires clear 

identification of the model's intended use, characterization of uncertainties, and statistical comparisons 

with observational data (Iqbal, Rosdi, Muhtadin, Erdiwansyah, & Faisal, 2025; WANG et al., 2010; 

Xiaoxia, Lin, & Salleh, 2025). Models can be “validated” partly for specific conditions but rarely 

universally validated across all scenarios. Typical sources of validation error include inaccurate input 
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data, poor assumptions about physical behaviour, or mismatched scales between simulation and real 

systems. The relationship between verification, validation, and model credibility is critical. A model 

may be correctly verified (i.e., free from programming errors) but still fail to represent the real system, 

making it invalid. Conversely, a conceptually accurate model that is poorly implemented can produce 

misleading results due to computational faults. Only through rigorous application of both V&V can a 

model attain credibility, which is the degree to which stakeholders trust the model to support decision-

making (Khayum, Goyal, & Kamal, 2025; Thacker et al., 2004; Yanti, Simajuntak, & Nurhanif, 2025). 

Familiar sources of errors in modelling and simulation can be grouped into four categories: conceptual 

model errors, data-related errors, software implementation errors, and user-induced errors. Conceptual 

errors arise from incorrect assumptions or system abstraction; data-related errors involve noise, bias, or 

missing information; software errors stem from flawed code or numerical instability; while user-

induced errors result from misinterpretation, inappropriate parameter settings, or incorrect usage of 

simulation tools (Jalaludin, Kamarulzaman, Sudrajad, Rosdi, & Erdiwansyah, 2025; Muhtadin, Rosdi, 

Faisal, Erdiwansyah, & Mahyudin, 2025; Sargent, 2010). Understanding and mitigating these errors is 

essential for ensuring model robustness, reproducibility, and defensibility in real-world applications. 

 

 
Fig. 1. Progression of Verification and Validation Activities in Modeling 

 

Fig. 1 illustrates the progression of Verification and Validation intensity levels throughout different 

stages of model development. The chart shows that Verification plays a dominant role in the early and 

middle phases, from model specification to solution verification. This highlights the importance of 

ensuring the model is constructed correctly from a computational and algorithmic standpoint. Its 

intensity peaks during the solution verification stage, where numerical accuracy, code correctness, and 

stability analysis are most critical. In contrast, Validation begins with low intensity and gradually 

increases toward the later stages of model development. This is because validation depends heavily on 

the availability of empirical or observational data, which typically becomes relevant only after the 

model has been fully implemented and verified. A significant rise in validation efforts is observed 

during the final stage, where the model is assessed against real-world data to determine its 

representational accuracy. This progression divergence reflects the two processes' different focuses: 

Verification ensures internal consistency and correct implementation. At the same time, Validation 

evaluates the external accuracy of the model in representing real-world phenomena. Both are 

complementary and essential for establishing model credibility. Understanding how these activities 

evolve during the modelling lifecycle helps developers plan an efficient and structured approach to 

V&V execution. 
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Table 1. Familiar Sources of Error in Modeling and Simulation 

Error Category Description Impact 

Conceptual Model 

Errors 

Incorrect assumptions or misrepresentation of 

system behaviour. 

Misaligned model objectives; 

invalid outputs. 

Data-Related 

Errors 

Noisy, biased, incomplete, or outdated data inputs. Reduced accuracy and 

reliability of simulation. 

Software 

Implementation 

Errors 

Programming bugs, numerical instability, or 

algorithm misuse. 

Faulty outputs despite correct 

model logic. 

User-Induced 

Errors 

Improper use of tools, misinterpretation of results, 

or parameter misconfiguration. 

Misleading interpretations 

and operational errors. 

 

Table 1 categorizes the familiar sources of errors encountered during developing and applying 

modelling and simulation (M&S) systems. Understanding these error categories is essential for 

implementing adequate verification and validation (V&V) strategies to ensure the credibility of 

simulation outcomes. The first category, Conceptual Model Errors, arises from flawed assumptions or 

an inaccurate abstraction of the real system. These errors often occur during the early stages of model 

design, where an incorrect understanding of system behaviour leads to invalid outputs and misaligned 

model objectives. Even if the implementation is technically sound, a model built on the wrong 

foundation cannot yield meaningful results. 

Data-related errors involve issues with the quality and relevance of input data. These may include 

outdated datasets, biased sampling, or incomplete observations. Since validation relies heavily on 

accurate data comparisons, such errors significantly reduce the reliability and accuracy of simulation 

results. Effective data pre-processing and uncertainty quantification are essential to mitigate this class 

of errors. Software Implementation Errors occur during the coding and computational phase. These may 

stem from programming bugs, numerical instabilities, or improper algorithm usage. Despite a correct 

conceptual model, such technical flaws can produce faulty results, undermining the credibility of the 

simulation. Verification techniques such as code reviews, debugging, and convergence analysis are used 

to address these issues. 

Finally, User-Induced Errors refer to mistakes made during the application or interpretation of the 

model. These include misuse of simulation tools, incorrect parameter settings, and misinterpreting 

results. While sometimes overlooked, these errors can lead to critical misjudgments, especially in high-

stakes decision-making. Training, user guidance, and robust interface design are vital in reducing 

human-induced failures. Table 1 highlights that modelling and simulation errors originate from 

technical and human factors. Recognizing and addressing each category systematically through V&V 

practices is key to achieving robust, reliable, and trustworthy simulation systems. 

 
 

3. Techniques and Methodologies for V&V 
 

Various well-established verification and validation techniques have been developed across different 

disciplines to ensure the trustworthiness of simulation models. These methods are designed to detect 

errors and inconsistencies in model development and build confidence in using simulation results for 

decision-making, design, and prediction. Verification techniques are primarily concerned with ensuring 

the model has been correctly implemented. One foundational method is code review and formal 

verification, in which simulation code is systematically examined to identify programming flaws, 

inconsistencies, or logical missteps. Formal methods, such as model checking or symbolic execution, 

apply mathematical principles to verify that the software adheres strictly to its specifications (Muzakki 

& Putro, 2025; Nizar et al., 2025; Roache, 1998). Additionally, debugging and error tracing are used 

extensively during implementation to track abnormal behaviour, trace variables, and identify faulty 

code segments that may not align with the conceptual model. 

Another widely applied technique is sensitivity analysis, which involves systematically varying input 

parameters to determine their impact on output results. Sensitivity analysis helps uncover instabilities 
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in the model. It can identify parameters that disproportionately influence outcomes, thereby directing 

attention to parts of the model that require more precise calibration or refinement (Almardhiyah, 

Mahidin, Fauzi, Abnisa, & Khairil, 2025; Paruggia, 2006; Saltelli, Tarantola, Campolongo, & Ratto, 

2004). In parallel, numerical accuracy checks, including mesh refinement, discretization error analysis, 

and convergence testing, verify that the numerical methods produce results that approximate accurate 

solutions with acceptable error margins (Mufti, Irhamni, & Darnas, 2025; Pranoto, Rusiyanto, & 

Fitriyana, 2025; Roache, 1998). Conversely, validation focuses on whether the model accurately 

represents the real-world system or phenomena it seeks to simulate. A key technique in this process is 

comparing model results with experimental or observational data. This direct comparison, often 

supported by statistical metrics such as RMSE, MAE, or R², is the most objective means of assessing 

model validity (Rosdi, Maghfirah, Erdiwansyah, Syafrizal, & Muhibbuddin, 2025; Sargent, 2010; 

Selvakumar, Maawa, & Rusiyanto, 2025). When experimental data is limited or unavailable, historical 

data comparisons may be an alternative, particularly in fields such as climate science or epidemiology, 

where long-term records provide a benchmark for validation. 

In early development phases, face validation is frequently employed. This involves the expert review 

of model logic and behaviour to determine whether results align with expectations based on domain 

knowledge. While subjective, face validation benefits complex systems or cases with limited data 

(Balci, 1994; Fitriyana, Rusiyanto, & Maawa, 2025; Muhibbuddin, Hamidi, & Fitriyana, 2025). 

Predictive validation is more rigorous, where the model is tested against scenarios or datasets not used 

during development or calibration. If the model demonstrates high accuracy under these conditions, its 

predictive credibility is strengthened (Bahagia, Nizar, Yasin, Rosdi, & Faisal, 2025; Khalisha, 

Caisarina, & Fakhrana, 2025; WANG et al., 2010). Researchers often incorporate statistical and 

uncertainty quantification methods to enhance the validation process's robustness further. Tools such 

as Monte Carlo simulations, probabilistic sensitivity analysis, and Bayesian inference allow analysts to 

evaluate the accuracy, uncertainty, and variability in model predictions. These techniques enable a 

deeper understanding of model behaviour under uncertainty and help quantify output confidence 

intervals (Kennedy & O’Hagan, 2001; Plumlee, 2017; Yana, Mufti, Hasiany, Viena, & Mahyudin, 

2025). 

Finally, various standards and frameworks support the structured implementation of these V&V 

techniques. For example, the IEEE 1516 standard guides verification protocols in distributed simulation 

environments using the High-Level Architecture (HLA). In engineering contexts, particularly in 

computational mechanics, the ASME V&V 10-2006 standard offers detailed procedures for verifying 

and validating solid mechanics models. These frameworks standardize terminology and procedures and 

promote best practices and documentation to enhance transparency, repeatability, and regulatory 

compliance. In sum, the rigorous application of these verification and validation methodologies is 

essential for ensuring the credibility of modelling and simulation systems. As models increasingly 

inform critical decisions in engineering, science, policy, and industry, the importance of robust V&V 

practices continues to grow. 

 

 
Fig. 2. Common Techniques Used in Verification and Validation (V&V) 
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Fig. 2 illustrates the relative intensity of various verification and validation (V&V) techniques within 

the modelling and simulation (M&S) community. The vertical axis represents usage intensity on a scale 

of 1 to 10, with higher values indicating broader or more frequent application across domains. The chart 

reveals that experimental data comparison is the most frequently employed technique, with a usage 

intensity of 9. This reflects the high value placed on empirical validation, where model outputs are 

benchmarked directly against observed or measured data. Such comparisons are considered one of the 

most objective and robust forms of validation. Code review and uncertainty quantification also exhibit 

high usage (8 out of 10), emphasizing the importance of early-stage verification and post-simulation 

analysis to ensure reliability under uncertain inputs. Debugging and predictive validation score 

moderately high (7), underscoring their dual role in providing technical soundness and forward-looking 

credibility, respectively. 

Sensitivity analysis and numerical accuracy checks have a usage intensity of 6, indicating their role in 

refining model performance and assessing solution stability. While essential, they are typically used in 

more specialized applications or after baseline verification. Face validation, scoring 5, is the least 

frequently used among the listed techniques. Although subjective, it remains valuable in the early stages 

of model development or when data is limited, as it allows domain experts to assess the realism of 

model behaviour. Overall, the figure highlights that no single V&V technique suffices in isolation. 

Instead, a combination of methods is typically employed depending on the model’s complexity, 

application domain, data availability, and decision-making context. The diversity in usage intensity 

reflects the flexibility and layered structure of the V&V process in modern simulation practice. 

 

 

Table 2. V&V Techniques Summary 

Technique Purpose Application Phase 

Code Review Detect implementation errors and code flaws Verification 

Formal Methods Prove the logical correctness of the model Verification 

Debugging Identify and resolve runtime anomalies Verification 

Sensitivity Analysis Assess the influence of input variation on 

outputs 

Verification 

Numerical Accuracy Checks Verify convergence and numerical accuracy Verification 

Experimental Data 

Comparison 

Validate outputs against empirical 

measurements 

Validation 

Historical Data Comparison Use past datasets for indirect validation Validation 

Face Validation Subjective review by domain experts Validation 

Predictive Validation Test predictions under unseen scenarios Validation 

Uncertainty Quantification Quantify output uncertainty due to input 

variability 

Validation 

 

Table 2 concisely overviews key techniques employed in the Verification and Validation (V&V) 

process within modelling and simulation workflows. Each method is categorized based on its primary 

purpose and role within either the verification or validation phase, offering valuable guidance for 

simulation practitioners to select appropriate methods. In the verification phase, techniques ensure the 

model has been correctly implemented according to its conceptual design. Code review is a foundational 

method that involves the inspection of source code to detect implementation errors or logical 

inconsistencies. Formal methods, though more mathematically rigorous, are especially valuable in 

critical applications, as they help prove the correctness of algorithms based on formal logic. Debugging 

is a practical approach to identifying and resolving runtime anomalies during model execution. 

Sensitivity analysis and numerical accuracy checks are analytical tools to ensure that the model behaves 

consistently when parameters are varied and that numerical results converge as expected key indicators 

of model stability and fidelity. 

In contrast, the validation phase assesses whether the model accurately represents the real-world system 

it is intended to simulate. Experimental data comparison remains the most direct and robust validation 

technique, involving the alignment of simulation outputs with measured empirical data. When such data 
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is unavailable, historical data comparison offers an alternative by leveraging past observations for 

validation. Face validation provides a qualitative assessment wherein domain experts evaluate whether 

the model behaves as expected based on their knowledge. Predictive validation furthers the assessment 

by testing the model’s ability to generalize and predict unseen conditions, strengthening its external 

validity. Lastly, uncertainty quantification addresses the inherent variability in input data and models 

by analyzing its effect on outputs, an essential technique for evaluating model robustness and 

confidence levels. Overall, Table 2 underscores that effective V&V requires a multi-faceted approach. 

No single technique suffices across all scenarios. Instead, an integrated framework that combines 

several methods tailored to the simulation’s objective, complexity, and data availability ensures the 

development of reliable, credible, and decision-worthy models. 

 
 

4. Case Studies and Applications 
 

Practising verification and validation (V&V) techniques across diverse domains have significantly 

improved simulation accuracy, credibility, and decision support. This section presents selected case 

studies from key industries such as aerospace, biomedical modelling, climate simulation, and defence, 

illustrating the benefits and challenges of rigorous V&V practices. In the aerospace industry, V&V is 

critical to ensuring the safety and performance of flight systems. For instance, NASA’s development of 

computational fluid dynamics (CFD) models for spacecraft re-entry relied heavily on solution 

verification through grid convergence testing and model validation using wind tunnel data (Gani, Saisa, 

et al., 2025; Irhamni, Kurnianingtyas, Muhtadin, Bahagia, & Yusop, 2025; Oberkampf & Roy, 2010). 

Similarly, Boeing integrates predictive validation and uncertainty quantification in the structural 

simulation of aircraft components to meet FAA certification requirements. These practices reduce the 

need for physical prototyping, saving time and cost while enhancing safety assurance (Gani, Zaki, 

Bahagia, Maghfirah, & Faisal, 2025; Maghfirah, Yusop, & Zulkifli, 2025; Roache, 1998). V&V is 

increasingly applied to patient-specific models such as cardiovascular simulations, orthopedic implants, 

and drug delivery systems in biomedical engineering. For example, V&V is essential in silico trials to 

ensure regulatory acceptance (Morrison, Stitzel, & Levine, 2023; Selvakumar, Gani, Xiaoxia, & Salleh, 

2025; Viceconti, Henney, & Morley-Fletcher, 2016). Using clinical data for validation and finite 

element verification for mesh sensitivity enables accurate predictions of physiological responses. 

Despite advances, challenges persist due to biological variability and limited access to high-resolution 

experimental data. 

Climate and environmental modelling represent another complex domain where V&V plays a vital role. 

Global climate models (GCMs) are validated using historical data and satellite observations to predict 

future climate scenarios. However, climate systems' nonlinear and chaotic nature makes verification 

and validation inherently difficult (Hourdin et al., 2017; Schmidt et al., 2017; Zaki, Adisalamun, & 

Saisa, 2025). Ensemble simulations and statistical comparisons are thus used to assess model reliability. 

Here, V&V provides confidence for policymakers in climate risk assessment and mitigation planning. 

In defence, simulation models are used for training, mission planning, and threat assessment. To ensure 

operational relevance, the U.S. Department of Defense (DoD) mandates adherence to the DoD 

Modeling and Simulation Verification, Validation, and Accreditation (VV&A) framework. A key 

benefit is enhanced decision-making speed during combat simulations, attributed to pre-validated model 

libraries and structured V&V protocols (Davis & Anderson, 2004; Efremov & Kumarasamy, 2025; Li, 

Ikram, & Xiaoxia, 2025). However, incorporating real-time sensor feedback and adapting to evolving 

battlefield conditions pose continuous validation challenges. 

Across various domains, the application of rigorous verification and validation (V&V) techniques has 

demonstrated multiple benefits. One of the most significant is the improved confidence in simulation 

results, which is especially critical in safety-critical systems where decisions must be based on 

trustworthy outcomes. Additionally, using reliable predictive models enhances the quality of decision-

making by providing stakeholders with greater clarity and foresight. Another significant advantage is 

the reduction in overall development costs and time, as rigorous V&V practices reduce the need for 

extensive physical experimentation or prototyping by confirming model fidelity early in the design 

cycle. Despite these advantages, implementing V&V remains challenging, particularly in emerging or 
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data-scarce fields. A primary obstacle is the limited availability of high-quality validation data, often in 

areas such as synthetic biology or autonomous systems. Moreover, defining appropriate validation 

metrics becomes increasingly complex when dealing with multi-scale, highly nonlinear, or stochastic 

models. The computational cost of performing thorough uncertainty quantification, especially involving 

extensive ensemble simulations, also presents a significant barrier. Another emerging difficulty lies in 

verifying models driven by artificial intelligence or machine learning, which frequently lack clear 

interpretability and do not conform to formal specifications (Allah, Toor, Shams, & Siddiqui, 2025; He, 

Dai, & He, 2025; Neudecker et al., 2020). In response to these challenges, recent research has proposed 

hybrid V&V approaches integrating data-driven modelling techniques with physics-based constraints. 

Furthermore, adaptive V&V frameworks are gaining traction, which allows validation protocols to 

evolve alongside the growing complexity and maturity of the models they support. These developments 

offer a promising path for maintaining simulation credibility in increasingly dynamic and data-intensive 

environments. 

 
Fig. 3. Impact of V&V Across Different Application Domains 

 

Fig. 3 illustrates the perceived impact of Verification and Validation (V&V) practices across four major 

domains: aerospace, biomedical, climate modelling, and defence. The effect is assessed based on three 

key criteria: confidence gain, decision support, and cost reduction, each measured on a scale from 1 to 

10. In the aerospace domain, V&V demonstrates the highest level of effectiveness across all three 

criteria. Confidence gain reaches a peak of 9, underscoring the critical role of V&V in ensuring system 

reliability and safety, especially for flight-critical applications. Similarly, high scores in decision 

support (8) and cost reduction (7) reflect the value of V&V in streamlining the design process and 

minimizing reliance on costly physical testing. The biomedical sector also benefits significantly from 

V&V practices, particularly in enhancing model confidence (score: 8) and supporting clinical decision-

making (score: 7). However, the slightly lower score in cost reduction (6) highlights the ongoing 

challenge of accessing sufficient and consistent patient-specific data for validation purposes. 

V&V contributes substantially to informed decision-making for climate modelling, with an impact level 

of 8 for decision support. This is critical for policy formulation and climate risk assessments. The 

relatively lower scores for confidence gain (7) and cost reduction (6) reflect inherent challenges in 

validating highly nonlinear and chaotic environmental systems and the computational resources 

required for ensemble simulations. In the defence domain, all three impact indicators score highly on 

confidence gain, decision support at 9, and cost reduction at 8, highlighting the maturity of structured 

V&V frameworks such as the DoD VV&A process. These practices support rapid and reliable mission 

simulations, increasing operational readiness and reducing the risks and costs associated with real-world 

exercises. Overall, the figure emphasizes that while the degree of impact may vary by domain, the 

implementation of rigorous V&V consistently leads to improved model credibility, enhanced decision-

making capability, and operational efficiency. It also illustrates that the effectiveness of V&V is closely 

tied to the availability of domain-specific data, computational resources, and regulatory frameworks. 
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Table 3. V&V Case Studies Summary 

Domain V&V Benefits Key Challenges 

Aerospace High safety assurance, reduced 

prototyping cost 

High complexity of fluid-structure 

interaction models 

Biomedical Regulatory compliance, patient-specific 

accuracy 

Limited clinical data, biological variability 

Climate 

Modeling 

Credible forecasts, policy support Nonlinearity, limited observability 

Defence Fast, reliable mission simulations Adapting models to real-time battlefield 

updates 

 

Table 3 summarises the benefits and challenges of implementing Verification and Validation (V&V) 

techniques across four key domains: aerospace, biomedical, climate modelling, and defence. Each 

domain showcases distinct motivations for applying V&V, as well as unique obstacles that influence 

the effectiveness and feasibility of these processes. In the aerospace sector, applying V&V yields critical 

benefits such as high safety assurance and a significant reduction in prototyping costs. This is primarily 

due to the ability of simulation models to predict performance under extreme conditions without the 

need for extensive physical testing. However, the domain is also characterized by the high complexity 

of fluid-structure interaction models, which require rigorous numerical verification and sophisticated 

experimental validation procedures, often involving wind tunnel data and high-fidelity simulation. 

The biomedical domain leverages V&V to meet regulatory compliance standards and enhance patient-

specific models' accuracy. This is particularly relevant in virtual clinical trials, implant simulations, and 

drug delivery systems. Nonetheless, a significant challenge lies in the limited availability of clinical 

data and biological variability among individuals, which complicates the verification of model 

mechanics and the validation against empirical outcomes. For climate modelling, V&V supports 

credible forecasting and evidence-based policy formulation. Validation typically relies on historical 

records and observational datasets, which serve as benchmarks for global and regional climate 

predictions. However, the nonlinearity of climate systems and limited observability of certain 

atmospheric and oceanic variables make model validation a significant scientific challenge. Ensemble 

methods and uncertainty quantification are frequently employed to enhance model reliability. 

V&V enables fast and reliable mission simulations in the defence domain, which is essential for 

operational planning and real-time decision-making. Benefits are observed in improved readiness and 

lower cost compared to live exercises. Still, adapting simulation models to real-time battlefield updates 

introduces complexity, as models must remain accurate and valid while dynamically integrating sensor 

data and evolving scenarios. Overall, Table 3 illustrates that while the benefits of V&V are substantial 

and domain-specific, the challenges are often technical, computational, or data-related. Addressing 

these challenges requires customized V&V strategies, integration of hybrid modelling approaches, and 

ongoing investment in data infrastructure and modelling tools tailored to each domain. 

 
 

5. Conclusion 
 

This article has comprehensively examined the techniques, applications, and benefits of Verification 

and Validation (V&V) in modelling and simulation (M&S) systems across multiple domains. As 

simulation increasingly becomes the backbone of design, prediction, and decision-making, especially 

in high-stakes fields such as aerospace, biomedicine, climate science, and defence, the demand for 

rigorous and adaptive V&V frameworks continues to grow. From the analysis, experimental data 

comparison emerged as the most widely applied validation method, scoring a usage intensity of 9/10, 

followed closely by code review and uncertainty quantification (8/10) across disciplines. These figures 

reflect the strong preference for empirical validation and robust error estimation to ensure simulation 

reliability. The domain-specific impact analysis also revealed notable findings. Aerospace and defence 

sectors reported the highest V&V benefits, with confidence gain and decision-making impact reaching 

9/10. At the same time, biomedical and climate modelling domains scored slightly lower due to inherent 

challenges such as data scarcity and model complexity. In addition, the defence sector highlighted 
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V&V’s role in achieving real-time simulation reliability, an increasingly crucial capability in modern 

adaptive and autonomous systems. Across all case studies, three significant benefits of rigorous V&V 

were consistently evident: (1) enhanced confidence in model credibility, (2) improved decision-making 

capabilities, and (3) significant reductions in development costs and testing cycles.   

However, several challenges persist, particularly in emerging fields like synthetic biology or AI-

integrated systems, where traditional V&V frameworks struggle due to limited interpretability, lack of 

formal specification, and high uncertainty. Addressing these issues calls for hybrid V&V approaches 

that integrate data-driven modelling with physics-informed constraints and the development of adaptive 

validation workflows that evolve with model maturity and complexity. In conclusion, while V&V 

methodologies have matured significantly and demonstrated substantial value, the next frontier lies in 

expanding their applicability to novel, complex, and learning-based models. As such, future research 

must prioritize scalable, explainable, and automated V&V solutions to ensure that simulation remains 

a reliable foundation for decision-making in an increasingly digital and dynamic world. 
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