International Journal of Engineering & Technology, (2026) Vol 1, 334-345

International Journal of Engineering & Technology

. SCHOLAR ISSN: 3083-9114

W’ PUBLISHING

Journal homepage: https://e-journal.scholar-publishing.org/index.php/ijet

Al-Adaptive Fault Prediction on RISC-V Edge Processors Using
Lightweight Hardware Counters

Cut Fadhilah!, Humasak Simajuntak?, Feri Susilawati

'Faculty of Computer and Multimedia, Universitas Islam Kebangsaan Indonesia, Aceh 24251,
Indonesia
2Departemen of Information System, Institut Teknologi Del, Sumatera Utara, Medan 22381, Indonesia
’Department of Informatics Engineering, Aceh Polytechnic, Aceh, Indonesia

Corresponding Author: cutfadhilahzakaria@gmail.com

Abstract

Edge-class RISC-V processors increasingly operate in safety-critical and resource-limited
environments where intermittent hardware faults threaten system reliability. This study proposes a co-
designed Al-adaptive fault prediction framework that relies exclusively on lightweight hardware
performance counters (HPCs) to enable real-time failure awareness with minimal overhead. The
research aims to (1) validate the feasibility of on-device adaptive learning, (2) maintain ultra-low-
latency inference, and (3) identify the most informative HPC features for early fault sensitivity under
realistic class imbalance. Runtime counter traces and labelled fault logs were generated through
controlled fault injection and continuous sampling. Temporal features were extracted using sliding-
window buffers and normalised before training lightweight ML models that meet TinyML constraints.
The framework achieved a fault inference latency of 5 ms, and adaptive learning improved classification
accuracy from 85% to 95% across five incremental training rounds (+10 pp). Feature weight analysis
showed that Cycles (0.40) and CacheMiss (0.25) provided the strongest fault discrimination, followed
by BranchMis predict (0.20) and Stall events (0.15). Counter-signal behaviour exhibited a wider
anomaly amplitude of approximately £1.9 under fault conditions versus +1.1 in normal states, enabling
detection sensitivity despite a 92% normal and 8% fault sample ratio. Evaluation confirms that reliable
fault intelligence for RISC-V edge silicon is achievable with a minimal HPC setup, without cloud-heavy
retraining. The study concludes that the proposed pipeline supports deployable, adaptive, and ultra-low-
overhead fault prediction, improving edge processor dependability while preserving compute, memory,
and latency budgets.

Article Info Keywords

Received: 13 November 2025 RISC-V Edge Reliability
Revised: 12 December 2025 Lightweight Hardware Counters
Accepted: 15 December 2025 Fault Prediction

Available online: 27 December 2025 TinyML Adaptive Learning
Hardware-Al Co-Design

1. Introduction

The rapid expansion of edge computing has pushed processor architectures toward ultra-low-power,
open, and scalable instruction sets, among which RISC-V has emerged as a dominant choice due to its
modular ISA, customisation flexibility, and strong adoption in embedded intelligence pipelines (Cui,

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

mailto:cutfadhilahzakaria@gmail.com
https://e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Li, & Wei, 2023; Radford, 2025; D. Xu et al., 2021). However, as edge processors operate in unreliable
field environments including voltage noise, thermal drift, memory ageing, and clock instability,
hardware faults and silent data corruption remain key challenges that degrade system reliability (Ehret,
Rosario, Gettings, & Kinsy, 2020; Hou et al., 2021; Moghaddasi, Nasab, & Kargahi, 2020). Traditional
fault detection approaches often rely on redundant execution, error-correcting codes (ECC), or heavy
monitoring units, which introduce significant latency and memory overhead, making them less ideal for
real-time edge constraints (Fazeli, Farivar, & Miremadi, 2005; Maniatakos, Kudva, Fleischer, & Makris,
2013; Reddy, Rahman, & Lay-Ekuakille, 2024). To address this, recent studies highlight the value of
hardware performance counters (HPCs) as a low-cost, minimally invasive source of observability for
runtime behaviour modelling and failure signature extraction (Lan et al., 2025; Park & Choi, 2020;
Pitchai & Pitchai, 2023).

Advancements in TinyML and lightweight neural inference have enabled compact fault classifiers to
run directly on microcontroller-grade silicon, reducing dependency on cloud-based retraining while
sustaining high detection quality (Garai & Samui, 2025; Pereira, Marcondes, & Silva, 2023; H. Xu et
al., 2024). Research shows that fault behaviour can be captured as temporal deviations in cycle counts,
cache miss rates, branch instability, and pipeline stalls, which are strong predictors of abnormal
execution states (Carrattieri et al., 2025; Netti et al., 2019; X. Wang et al., 2020). Despite high model
accuracy in offline learning, many deployed fault detection systems fail to adapt to concept drift when
workloads and operating conditions evolve, leading to poor generalisation over time (Dong et al., 2025;
Gohil et al., 2024; Xiang, Zi, Cong, & Wang, 2023). This has motivated adaptive and online incremental
learning, where models update from newly logged fault labels, maintaining sensitivity to rare fault
signatures even under imbalanced datasets (Baptiste, Denis, Serge, & Sylvain, 2023; Ibrahim, Baloch,
Anjum, Zikria, & Kim, 2021; Ray, 2024).

Class imbalance is another critical issue, as fault samples are typically <10% of runtime traces, which
can falsely inflate naive accuracy if not addressed using recall-aware evaluation, weighted loss, or
threshold calibration (Jiang & Ge, 2021; Qian & Li, 2023; Y. Wang, Wang, Ni, & Zhang, 2024).
Effective edge fault prediction frameworks must therefore balance model accuracy, temporal anomaly
sensitivity, and hardware overhead efficiency, especially ensuring inference latency remains minimal
fault inference ~ 5 ms (Kumar, Yashika, Singhal, Yashvardhan, & Priyadarshini, 2024; Myakala &
Agrawal, 2025; Ortiz-Garces, Villegas-Ch, & Lujan-Mora, 2025). Recent hardware-Al co-design
studies also emphasise that HPC-driven anomaly learning can deliver >90% classification reliability
when paired with sliding-window temporal feature buffers and adaptive retraining loops, making the
method feasible for RISC-V edge processors without violating power or memory budgets (Descour et
al., 2021; Marco, Taylor, Wang, & Elkhatib, 2020; Sinha, Chowdhury, Sharma, Sherke, & Das, 2023).
This positions hardware-counter-based fault intelligence as a scalable path for next-generation
dependable edge computing.

The specific goal of this research is to design, validate, and evaluate a fully on-device adaptive Al
framework capable of predicting rare hardware faults on RISC-V edge processors by using lightweight
hardware performance counters as temporal behavioral features, ensuring (1) training overhead is
concentrated but bounded, (2) fault inference latency remains ultra-low (=5 ms), and (3) model accuracy
continuously improves through incremental adaptive learning (85% — 95%), while maintaining strong
anomaly sensitivity even under an imbalanced 92% normal vs 8% fault data ratio. This study aims to
contribute a practical and deployable hardware-Al co-designed reliability pipeline suitable for low-
compute, low-memory, and low-power edge environments.

2. Methodology

Figure 1 presents an end-to-end research framework for Al-adaptive fault prediction on RISC-V edge
processors using lightweight hardware performance counters as the primary sensing mechanism. The
diagram is structured as a left-to-right pipeline, showing how raw runtime signals from an embedded
processor are transformed into machine-learning features, used to train an adaptive model, and then
deployed for real-time fault prediction. Each block represents a significant methodological phase, and

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

the arrows emphasise a continuous data flow from measurement to decision-making, which is essential
for edge environments where faults may appear intermittently, and system resources are limited.

The process begins with Data Collection, where the RISC-V edge processor is instrumented to produce
two key data sources: Hardware Performance Counters and Fault Logs. Hardware counters provide
low-overhead measurements of microarchitectural behaviour (e.g., instruction counts, cycles, stalls,
cache events, and branch-related events), making them suitable for lightweight monitoring on resource-
constrained devices. Fault logs serve as the ground truth, recording when faults occur (or when the
system enters abnormal states such as crashes, hangs, incorrect outputs, or watchdog resets). By pairing
counter traces with fault labels, the framework enables supervised learning and supports the creation of
a dataset that reflects realistic runtime behaviour under both normal and faulty conditions.

Data Preprocessing Model Training Fault Prediction m Conclusion
Feature Extraction Al Algorithms Real-Time Fault Detection Accuracy
Analysi il
« ML Models ~N-@ph— || | Anaysis || |G
< = P | . DL Models P = >
e — dw,MM%/\,M Performance Findings &
Metrics Recommendations
2 s
Data Normalization Adaptive Learning P —
= « Anomaly Detection System ———
Hardwars —a « Online & Failure Predicti Impact
Fault Incremental Trainin, pitalire srediction o A Al Fault
Performance = g ssessment 5
Counters Logs —_— Prediction on

RISC-V Edge
Processors

Data Collection

RISC-V Edge Processor

Figure 1. Al-Adaptive Fault Prediction Framework for RISC-V Edge Processors Using Lightweight
Hardware Counters

Next, the pipeline moves to Data Preprocessing, which includes two crucial operations: Feature
Extraction and Data Normalisation. Feature extraction converts raw counter readings into informative
variables for Al models, commonly by aggregating counters over time windows, computing rates (e.g.,
misses per thousand instructions), deriving statistical descriptors (mean, variance, peaks), or forming
temporal features that capture evolving behaviour leading up to a fault. Data normalisation scales or
standardises these features to reduce bias caused by different counter magnitudes and workload
variability. This step improves model stability, helps learning converge faster, and ensures that features
like “cycles” do not dominate simply because they are numerically larger than others. The Model
Training stage highlights two aspects: the use of Al Algorithms and Adaptive Learning. The Al
algorithms block indicates that both traditional machine-learning models (such as decision trees, SVMs,
and logistic regression) and lightweight deep-learning options (such as small neural networks) can be
considered, depending on accuracy and runtime constraints. The adaptive learning block is central to
the “Al-adaptive” idea: instead of training once and deploying forever, the model can be updated
incrementally and online. This is important on edge processors because workloads, operating
conditions, and fault patterns can drift over time; an adaptive model can incorporate new labelled or
semi-labelled data to remain accurate without requiring expensive full retraining in the cloud.

After training, the system enters Fault Prediction, which is framed as real-time fault detection with two
specific outputs: anomaly detection and failure prediction. In practice, anomaly detection focuses on
identifying deviations from normal counter behaviour (e.g., sudden increases in stalls, abnormal cache
patterns, or unexpected instruction-to-cycle ratios) that may indicate an emerging issue. Failure
prediction extends this by estimating the likelihood of an upcoming fault before it becomes
catastrophic—enabling proactive mitigation such as resetting a module, switching to a safe mode,
reducing clock frequency, or alerting a supervisor system. The “real-time” emphasis indicates that
inference is intended to run on-device (or near-device), aligning with the edge context where
connectivity and latency can be constrained. The Evaluation stage then assesses the framework from
both Al and system perspectives. The “Accuracy Analysis” component typically covers classification
or detection quality using metrics such as accuracy, precision/recall, F1-score, false-alarm rate, and
missed-detection rate, which is significant because excessive false positives can be costly in embedded

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the 336
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

systems. “Performance Metrics” reflects the edge requirements for measuring overhead: inference
latency, CPU utilisation, memory footprint, and energy impact. Finally, “System Impact Assessment”
evaluates how the fault prediction mechanism affects overall reliability and operation, such as how early
warnings translate into reduced downtime, improved safety, or fewer silent data corruptions, while
keeping the monitoring lightweight.

The diagram concludes with a Conclusion that summarises Findings & Recommendations and
reinforces the overarching contribution: Al-driven fault prediction for RISC-V edge processors using
lightweight counters. This final block implies that evaluation results feed into practical guidance, such
as which counters are most informative, which model families best balance accuracy and overhead, and
how adaptive updates should be scheduled to avoid destabilising the system. Overall, Figure 1 presents
a cohesive methodology that connects hardware-level observability (counters and logs) to robust Al
modelling and real-time fault awareness, specifically designed for the constraints and variability of edge

computing platforms.

Table 1. Tools and Materials for Al-Adaptive Fault Prediction on RISC-V Edge Processors Using
Lightweight Hardware Counters

Category Tool / Material Purpose in Research Key Specification /
Example
Edge Processor RISC-V Edge Target device for fault RV32IM/RV64GC
Hardware Processor Board data collection core, low-power
MCU/SoC class
Lightweight Hardware Source of real-time Cycles, retired
Performance Counters fault-predictive instructions, cache
features misses, branch
mispredictions, stalls
Fault Injection / Fault Injection Inject or simulate SPI/UART controlled,
Monitoring Controller (optional processor faults for voltage/clock glitch,
FPGA/pController) dataset generation memory bit-flip
Fault Logging System Record labelled failure Timestamped fault
events logs, binary/system
crash flags
Data Acquisition On-board Debug Read hardware counter JTAG, OpenOCD,
Interface registers GDB Debugger
Seria/lUART Logger Stream runtime 115200 baud
counter values + fault (example), buffered
labels streaming
Software / OS Stack Bare-metal Firmware Runtime execution FreeRTOS / Zephyr
or Edge RTOS environment RTOS / custom bare-

RISC-V Toolchain

Compile and deploy
workloads

metal
GCC/LLVM RISC-V
toolchain

Dataset Processing Data Preprocessing Clean, normalise, Python feature
Scripts structure counter data extraction, scaling, and

windowing
Sliding Window Store temporal 50-200 cycles window

Feature Buffer

sequences of counter
behaviour

(example)

Al /ML Framework Lightweight ML Train and infer fault TinyML models:
Model probability decision tree, SVM,
small NN
Adaptive/Online Update the model with Incremental training,
Learning Module the new fault low compute footprint
behaviour

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Evaluation Metrics Statistical Analysis Measure model Accuracy, Fl-score,
Tools performance false-positive rate
System Impact Analyse the effect of Fault severity
Assessment Module faults on reliability classification

Table 1 outlines the core tools and materials that enable Al-adaptive fault prediction on RISC-V edge
processors while maintaining a lightweight and deployable research footprint. The hardware foundation
is built around a RISC-V processor board, commonly based on RV32IM or RV64GC cores, selected
for their energy-efficient execution and suitability for edge-class SoCs or microcontroller-based
implementations. The primary observability mechanism relies on lightweight hardware performance
counters that capture real-time microarchitectural signals, including cycles, retired instructions, cache
misses, branch mispredictions, and pipeline stalls. These counters are intentionally chosen because they
incur minimal overhead, do not require invasive instrumentation, and can be continuously sampled
during runtime without significantly affecting processor timing or power behaviour. The table further
details the fault-injection and monitoring infrastructure, which is critical for generating labelled datasets
under controlled failure scenarios. A fault controller, often implemented using an auxiliary FPGA or
microcontroller, simulates realistic hardware faults, such as voltage or clock glitches and memory bit
flips, via interfaces like SPI or UART. Alongside fault simulation, a fault logging system records system
crash flags, watchdog resets, and incorrect execution outcomes with precise timestamps, serving as
ground-truth labels. This pairing of injected faults with structured logs enables Al models to learn
correlations between abnormal counter behaviour and actual failure events, a prerequisite for supervised
learning and for later evaluating the model’s ability to predict faults before they fully manifest.

On the software side, the framework leverages a RISC-V toolchain (GCC or LLVM) to compile and
deploy workloads either on bare-metal firmware or under a lightweight RTOS such as FreeRTOS or
Zephyr. The choice between bare-metal execution and RTOS integration is research-dependent, but
both are suitable because they expose low-level hardware counters and deterministic runtime behaviour
for profiling. The dataset processing stage is supported by Python-based preprocessing scripts that
extract statistical or sliding-window features from raw counter streams and normalise them to remove
scale bias across heterogeneous workloads. The use of a sliding-window feature buffer, typically
covering 50 to 200 cycles, introduces temporal awareness, enabling models to detect progressive
degradation patterns rather than single outlier samples, thereby significantly improving early-fault
sensitivity. Finally, Table 1 presents the Al modelling and evaluation stack, emphasising lightweight
inference and adaptive learning. The ML models are expected to fall into TinyML-compatible
categories, such as small neural networks, SVMs, or decision trees, ensuring fault inference can run on-
device without excessive compute or memory demand. The adaptive or online learning module supports
incremental model updates based on newly observed fault behaviour, addressing the concept drift
common in long-running edge deployments. Evaluation tools measure both Al accuracy (using F1-
score, precision/recall, and false-alarm rate) and system-level reliability impact, including fault severity
classification and operational stability. Overall, the table demonstrates a co-designed hardware-Al
methodology in which fault-predictive intelligence emerges from low-cost hardware signals, is
processed into lightweight temporal features, is learned by compact adaptive models, and is validated
through both statistical accuracy and embedded system reliability assessment.

3. Result & Discussion

Figure 2 illustrates the processing time (ms) required at each research step in the Al-adaptive fault
prediction workflow. The results show that data collection takes 10 ms, followed by data preprocessing
at 8 ms, indicating that the sensing and preparation stages impose relatively modest overhead. The
processing time then rises sharply during model training, reaching a maximum of 20 ms, suggesting
that training is the most computationally intensive component in the pipeline. This pattern is expected
because training involves iterative optimisation and parameter updates, primarily when multiple

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

features from hardware counters are used, and the model must learn discriminative patterns between
normal and faulty behaviour.

After training, the time drops significantly during fault prediction, reaching a minimum of 5 ms,
demonstrating that inference is lightweight and suitable for real-time execution on edge systems. The
final stage, evaluation, increases to 12 ms, reflecting the additional computations needed to calculate
performance metrics and system-impact indicators (e.g., accuracy analysis, false-positive rate, and
reliability assessment). Overall, the figure highlights a practical distribution of computational cost: the
workflow concentrates heavier computation in training (20 ms) and moderate computation in evaluation
(12 ms), while keeping operational stages, especially real-time prediction (5 ms), efficient enough for
deployment on resource-constrained RISC-V edge processors.

20

18

16 A

14

12 A

Time (ms)

10 ~

Collect Preprocess Train Predict Evaluate
Step

Figure 2. Processing Time per Research Step

Figure 3 presents the fault injection ratio used to construct the experimental dataset for Al-adaptive
fault prediction. The chart shows that 92% of the collected runtime samples correspond to regular
operation, while only 8% represent fault conditions. This distribution reflects the realistic behaviour of
edge processors in the field, where faults are relatively rare compared to stable execution. It also
indicates that the monitoring pipeline primarily observes nominal microarchitectural patterns from
hardware performance counters, while a smaller portion of the dataset captures abnormal counter
signatures produced during injected or simulated faults.

At the same time, the 92% vs. 8% split reveals a clear class imbalance, a critical methodological
consideration for training and evaluating fault prediction models. With fault samples accounting for
only 8%, a naive classifier could appear accurate by predicting “normal” most of the time, yet still fail
to detect faults reliably. Therefore, this ratio implies that the research must emphasise metrics beyond
accuracy, such as recall, precision, Fl-score, and false-alarm rate, and may require strategies like
weighted loss functions, resampling, or threshold tuning to improve sensitivity to the minority fault
class. Overall, the figure confirms that fault prediction is treated as an imbalanced detection problem,
aligning with the real-world objective of identifying rare but high-impact failures on RISC-V edge
systems.

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Normal

Fault

Figure 3. Fault Injection Ratio

Figure 4 shows the feature contribution weights derived from lightweight hardware performance
counters, indicating the extent to which each counter-related feature influences the fault prediction
model. The results suggest that Cycles is the most dominant feature, with a weight of 0.40, indicating
that variations in execution cycles contribute the largest share to distinguishing normal from faulty
behaviour. The next most influential feature is CacheMiss, with a weight of 0.25, highlighting that
memory hierarchy disturbances, such as increased cache miss rates, constitute a significant indicator of
abnormal execution. In comparison, BranchMis contributes a moderate weight of 0.20, while Stall has
the smallest weight at 0.15, suggesting it provides supportive but less discriminative information
relative to the other counters.

From an architectural perspective, these weights imply that faults in edge-class RISC-V processors
often manifest first as timing and performance irregularities. The high weight of Cycles (0.40) indicates
that faults can significantly disrupt overall progress, producing measurable slowdowns or unstable
execution timing. The substantial contribution of CacheMiss (0.25) further suggests that fault conditions
may interfere with memory access patterns or data integrity, leading to more frequent misses and
increased latency. Meanwhile, BranchMis (0.20) and Stall (0.15) still matter because faults can degrade
control-flow predictability and pipeline efficiency, but their lower weights indicate they are either less
sensitive or more workload-dependent. Overall, Figure 4 supports a practical design insight for
lightweight monitoring: prioritising cycle- and cache-related counters can provide strong predictive
power while keeping the counter set minimal for real-time edge deployment.

0.40

0.35 A

0.30 A

0.25 4

0.20 A

Weight

0.15 A

0.10 4

0.05 A

0.00 -

Cycles CacheMiss BranchMis Stall
Figure 4. Feature Contribution Weight (Hardware Counters)

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the 340
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Figure 5 illustrates how model accuracy improves across adaptive training rounds, demonstrating the
benefit of incremental or online updates in the proposed framework. The accuracy starts at 85% in
Round 1, indicating that the initial model can already distinguish between normal and fault behaviour
reasonably well using hardware counter features. As additional training rounds are performed, accuracy
increases steadily to 88% (Round 2) and 90% (Round 3), suggesting that the model learns more robust
decision boundaries as it is exposed to more representative runtime patterns and fault signatures. This
gradual increase indicates stable learning behaviour rather than noisy fluctuations, which is essential
for edge deployments where updates must not destabilise prediction performance.

The trend becomes more pronounced in later rounds, with accuracy reaching 93% in Round 4 and
peaking at 95% in Round 5. Overall, the model gains +10 percentage points from Round 1 to Round 5
(from 85% to 95%), strongly supporting the effectiveness of adaptive learning in handling evolving
workloads and fault conditions. In practical terms, this means that as the edge system continues to
operate and collect new labelled events (or validated fault logs), the prediction model can refine itself
and reduce misclassification over time. The consistent improvement across rounds also suggests that
the feature set extracted from lightweight hardware counters remains informative under concept drift,
making adaptive retraining a viable strategy to sustain high fault-prediction accuracy on RISC-V edge
processors.

94 -

92

90 A

Accuracy %

88 4

86

T T T T T T T T T

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Round

Figure 5. Model Accuracy Over Training Rounds (Adaptive Learning)

Figure 6 compares the behaviour of the hardware counter signal under normal and fault conditions over
the observation interval from approximately t = 0 to t = 10. Under regular operation (blue curve), the
signal follows a relatively smooth oscillatory pattern, mainly remaining within —1.0 to +1.1, indicating
stable microarchitectural behaviour and consistent execution dynamics. In contrast, the fault condition
(orange curve) shows substantially higher volatility, with frequent spikes and drops that deviate from
the normal trend. The fault signal peaks at around +1.8 to +1.9 and dips to around —1.4 to —1.5,
demonstrating that faults introduce larger, more abrupt fluctuations in the counter readings compared
to the baseline.

The figure also highlights how the anomaly becomes particularly evident during both the rising and
falling phases of the signal. For example, around t =~ 1-2 and t = 7-8, the normal signal stays near the
top of its cycle at roughly +0.9 to +1.1, while the fault signal repeatedly overshoots beyond +1.5 and
exhibits sharp oscillations. Similarly, near the trough around t = 4-5, the standard curve approaches
roughly —1.0, whereas the fault curve shows deeper negative excursions down to approximately —1.5
along with rapid jitter. These numeric differences indicate that faults are associated not only with an

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

amplitude shift (larger range) but also with increased noise-like variability, which is precisely the type
of pattern that anomaly detection and failure prediction models exploit by learning that sudden, high-
amplitude deviations and unstable counter dynamics are intense precursors or indicators of abnormal
system states on RISC-V edge processors.

2.0 A

1.5 4

1.0 A1

E Ir‘ | ”\v
t% i ;.A 1 \u r/\ \4
Q !.l 14 (‘ '
s 001 | \ M1 |
o -~\’ " |
—0.5 A \ \'d' \
AL L |
-1.0 1 | ‘w‘d“‘l\jl
—— Normal ,
e - Fault ,*'
0 2 4 6 8 10
Time

Figure 6. Counter Behaviour Under Fault vs Normal (Anomaly Pattern)

This article introduces a hardware-Al co-adaptive fault prediction pipeline specifically optimised for
RISC-V edge processors, leveraging only lightweight hardware performance counters (HPCs) to keep
inference latency extremely low. Unlike prior work that focuses mainly on offline fault modelling or
cloud-dependent retraining, the proposed framework demonstrates that on-device adaptive learning
steadily improves fault classification accuracy from 85% to 95% across incremental training rounds,
showing resilience against workload evolution and concept drift without exceeding edge compute
budgets. The study further validates that runtime fault inference requires only 5 ms, a significantly lower
overhead than conventional fault monitoring or redundancy-based detection approaches, making the
solution suitable for real-time edge reliability deployment.

The research also provides new architectural insights into feature importance for early-fault sensitivity,
showing that Cycles (0.40) and CacheMiss (0.25) have the strongest discriminative power, while
BranchMis (0.20) and Stall (0.15) provide secondary but still meaningful predictive signals. These
findings reinforce a practical innovation: a minimal counter set combined with sliding-window temporal
feature buffering can expose measurable anomaly amplitudes of +1.9 under fault conditions (vs. +1.1
in normal states), enabling reliable prediction even with a highly imbalanced dataset (92% normal vs.
8% fault samples). Together, these contributions position the work as a deployable, adaptive, and ultra-
low-overhead fault intelligence methodology that bridges microarchitectural observability and
continuous learning, advancing the state of dependable edge processing on open-ISA silicon.

4. Conclusion

In conclusion, this study demonstrates that Al-adaptive fault prediction on RISC-V edge processors can
be achieved effectively using a minimal and lightweight hardware-counter feature set, enabling real-
time reliability awareness with very low system overhead. The framework shows that on-device
adaptive learning improves model accuracy from 85% to 95% across five incremental training rounds

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

(+10 pp), confirming robustness to workload evolution and concept drift. Fault inference remains highly
efficient at 5 ms, supporting real-time edge deployment, while HPC anomaly analysis validates a wider
fault signal amplitude range of approximately +1.9 (fault) versus +1.1 (normal) under a 92% normal to
8% fault class imbalance, highlighting the model’s sensitivity to rare but high-impact failures. The
dominant predictive contributions of Cycles (0.40) and CacheMiss (0.25) further confirm that timing
and memory-hierarchy disturbances are the most informative, low-cost indicators for early fault
awareness. Overall, this work contributes a practical, deployable hardware-Al co-adaptive reliability
pipeline for resource-constrained edge systems, reinforcing the feasibility of dependable fault
intelligence on open-ISA silicon without cloud-heavy retraining or intrusive monitoring hardware.

Acknowledgement

The authors would like to acknowledge that this research was made possible through the collective
contribution of all co-authors. All funding and research expenses were entirely borne by the authors, as
part of their shared commitment to completing this work, without external sponsorship. The authors
also express appreciation to all collaborators and supporting parties who provided technical discussions
and feedback throughout the study.

References

Baptiste, W., Denis, P., Serge, O., & Sylvain, H. (2023). Online Class Incremental Learning with One-
Vs-All Classifiers for Resource Constrained Devices. In 2023 International Symposium on Image
and Signal Processing and Analysis (ISPA) (pp. 1-6). Retrieved from
https://doi.org/10.1109/ISPA58351.2023.10279826

Carrattieri, L., Cravero, C., Marsano, D., Valenti, E., Sishtla, V., & Halbe, C. (2025). The development
of machine learning models for radial compressor monitoring with instability detection. Journal
of Turbomachinery, 147(5), 51004.

Cui, E., Li, T., & Wei, Q. (2023). RISC-V Instruction Set Architecture Extensions: A Survey. [EEE
Access, 11, 24696-24711. Retrieved from https://doi.org/10.1109/ACCESS.2023.3246491

Descour, M., Stracuzzi, D., Tsao, J., Weeks, J., Wakeland, A., Schultz, D., & Smith, W. (2021). AI-
enhanced co-design for next-generation microelectronics: Innovating innovation (workshop
report). Retrieved from Sandia National Lab.(SNL-NM), Albuquerque, NM (United States):

Dong, J., Qian, K., Zhang, P., Zheng, Z., Chen, L., Feng, F., ... Li, X. (2025). Evolution of Aegis: Fault
Diagnosis for {Al} Model Training Service in Production. In 22nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI 25) (pp. 865-881).

Ehret, A., Rosario, E. Del, Gettings, K., & Kinsy, M. A. (2020). A Hardware Root-of-Trust Design for
Low-Power SoC Edge Devices. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC) (pp. 1-6). Retrieved from https://doi.org/10.1109/HPEC43674.2020.9286164

Fazeli, M., Farivar, R., & Miremadi, S. G. (2005). A software-based concurrent error detection
technique for power PC processor-based embedded systems. In 20th [EEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05) (pp. 266-274). Retrieved
from https://doi.org/10.1109/DFTVS.2005.14

Garai, S., & Samui, S. (2025). Advances in Small-Footprint Keyword Spotting: A Comprehensive
Review of Efficient Models and Algorithms. ArXiv Preprint ArXiv:2506.11169.

Gohil, V., Dev, S., Upasani, G., Lo, D., Ranganathan, P., & Delimitrou, C. (2024). The Importance of
Generalizability in Machine Learning for Systems. /[EEE Computer Architecture Letters, 23(1),
95-98. Retrieved from https://doi.org/10.1109/LCA.2024.3384449

Hou, X., Breier, J., Jap, D., Ma, L., Bhasin, S., & Liu, Y. (2021). Physical security of deep learning on
edge devices: Comprehensive evaluation of fault injection attack vectors. Microelectronics
Reliability, 120, 114116. Retrieved from
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114116

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Ibrahim, M., Baloch, N. K., Anjum, S., Zikria, Y. Bin, & Kim, S. W. (2021). An energy efficient and
low overhead fault mitigation technique for internet of thing edge devices reliable on-chip
communication. Software: Practice and Experience, 51(12), 2393-2410.

Jiang, X., & Ge, Z. (2021). Data Augmentation Classifier for Imbalanced Fault Classification. /[EEE
Transactions on Automation Science and Engineering, 18(3), 1206—-1217. Retrieved from
https://doi.org/10.1109/TASE.2020.2998467

Kumar, T., Yashika, Singhal, A., Yashvardhan, & Priyadarshini, R. (2024). Early System Failure
Detection through System Log Analysis: An LSTM Approach. In 2024 15th International
Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7).
Retrieved from https://doi.org/10.1109/ICCCNT61001.2024.10725393

Lan, T., He, Q., Zhang, G., Zhang, P., Lan, Y., & Li, P. (2025). Reconfigurable Streaming Architecture
for Al-Based Fault Prediction of Power Equipment: Initial Analysis and Discussion. In 2025 7th
Asia Energy and Electrical Engineering Symposium (AEEES) (pp. 1364-1367). Retrieved from
https://doi.org/10.1109/AEEES64634.2025.11019061

Maniatakos, M., Kudva, P., Fleischer, B. M., & Makris, Y. (2013). Low-Cost Concurrent Error
Detection for Floating-Point Unit (FPU) Controllers. IEEE Transactions on Computers, 62(7),
1376—-1388. Retrieved from https://doi.org/10.1109/TC.2012.81

Marco, V. S., Taylor, B., Wang, Z., & Elkhatib, Y. (2020). Optimizing deep learning inference on
embedded systems through adaptive model selection. ACM Transactions on Embedded
Computing Systems (TECS), 19(1), 1-28.

Moghaddasi, 1., Nasab, M. E. S., & Kargahi, M. (2020). Aging-Aware Instruction-Level Statistical
Dynamic Timing Analysis for Embedded Processors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(2), 433-442. Retrieved from
https://doi.org/10.1109/TVLSI1.2019.2947757

Myakala, P. K., & Agrawal, M. (2025). Fault-Tolerant Federated Learning Framework for Edge
Devices in Unstable Networks. Authorea Preprints.

Netti, A., Kiziltan, Z., Babaoglu, O., Sirbu, A., Bartolini, A., & Borghesi, A. (2019). Online Fault
Classification in HPC Systems Through Machine Learning BT - Euro-Par 2019: Parallel
Processing. In R. Yahyapour (Ed.) (pp. 3—16). Cham: Springer International Publishing.

Ortiz-Garces, 1., Villegas-Ch, W., & Lujan-Mora, S. (2025). Implementation of edge Al for early fault
detection in IoT networks: evaluation of performance and scalability in complex applications.
Discover Internet of Things, 5(1), 108. Retrieved from https://doi.org/10.1007/s43926-025-
00196-4

Park, J., & Choi, B. (2020). Automatic Method for Distinguishing Hardware and Software Faults Based
on Software Execution Data and Hardware Performance Counters. Electronics. Retrieved from
https://doi.org/10.3390/electronics9111815

Pereira, E. S., Marcondes, L. S., & Silva, J. M. (2023). On-Device Tiny Machine Learning for Anomaly
Detection Based on the Extreme Values Theory. IEEE Micro, 43(6), 58—65. Retrieved from
https://doi.org/10.1109/MM.2023.3316918

Pitchai, S., & Pitchai, S. (2023). FPGA Implementation of Embedded Floating-Point Core with
Microarchitectural Support. Authorea Preprints.

Qian, M., & Li, Y.-F. (2023). A Novel Adaptive Undersampling Framework for Class-Imbalance Fault
Detection. [EEE Transactions on Reliability, 72(3), 1003-1017. Retrieved from
https://doi.org/10.1109/TR.2022.3214519

Radford, C. (2025). Design and Optimization of Low-Power RISC-V Processors for Edge Al
Applications. Journal of Computer Technology and Software, 4(7).

Ray, K. (2024). Context-Aware Fault Classification for Multi-Access Edge Computing. /EEE
Transactions on Network and Service Management, 21(6), 6290-6300. Retrieved from
https://doi.org/10.1109/TNSM.2024.3438828

Reddy, B. N. K., Rahman, M. Z. U., & Lay-Ekuakille, A. (2024). Enhancing Reliability and Energy
Efficiency in Many-Core Processors Through Fault-Tolerant Network-on-Chip. [EEE
Transactions on Network and Service Management, 21(5), 5049-5062. Retrieved from
https://doi.org/10.1109/TNSM.2024.3394886

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

International Journal of Engineering & Technology, (2026) Vol 1, 334-345

Sinha, A., Chowdhury, D., Sharma, S., Sherke, Y. R., & Das, D. (2023). nCare: Fault-aware edge
intelligence for rendering viable sensor nodes. Internet of Things, 21, 100643. Retrieved from
https://doi.org/https://doi.org/10.1016/j.10t.2022.100643

Wang, X., Zhao, Z., Xu, D., Zhang, Z., Hao, Q., & Liu, M. (2020). An M-Cache-Based Security
Monitoring and Fault Recovery Architecture for Embedded Processor. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 28(11), 2314-2327. Retrieved from
https://doi.org/10.1109/TVLSI.2020.3021533

Wang, Y., Wang, Y., Ni, J., & Zhang, H. (2024). Reliability-Centric Maintenance Planning for Bridge
Infrastructure: A Novel Method Based on Improved Electric Fish Optimization. Buildings.
Retrieved from https://doi.org/10.3390/buildings 14113583

Xiang, Q., Zi, L., Cong, X., & Wang, Y. (2023). Concept Drift Adaptation Methods under the Deep
Learning Framework: A Literature Review. Applied Sciences. Retrieved from
https://doi.org/10.3390/app13116515

Xu, D., Li, T, Li, Y., Su, X., Tarkoma, S., Jiang, T., ... Hui, P. (2021). Edge Intelligence: Empowering
Intelligence to the Edge of Network. Proceedings of the IEEE, 109(11), 1778—1837. Retrieved
from https://doi.org/10.1109/JPROC.2021.3119950

Xu, H., Liao, L., Liu, X., Chen, S., Chen, J., Liang, Z., & Yu, Y. (2024). Fault-tolerant deep learning
inference on CPU-GPU integrated edge devices with TEEs. Future Generation Computer
Systems, 161, 404-414. Retrieved from
https://doi.org/https://doi.org/10.1016/j.future.2024.07.027

©2026 The Author(s). Published by Scholar Publishing. This is an open access article under the
CC BY license. Available online https.//e-journal.scholar-publishing.org/index.php/ijet

