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Abstract 

Edge-class RISC-V processors increasingly operate in safety-critical and resource-limited 

environments where intermittent hardware faults threaten system reliability. This study proposes a co-

designed AI-adaptive fault prediction framework that relies exclusively on lightweight hardware 

performance counters (HPCs) to enable real-time failure awareness with minimal overhead. The 

research aims to (1) validate the feasibility of on-device adaptive learning, (2) maintain ultra-low-

latency inference, and (3) identify the most informative HPC features for early fault sensitivity under 

realistic class imbalance. Runtime counter traces and labelled fault logs were generated through 

controlled fault injection and continuous sampling. Temporal features were extracted using sliding-

window buffers and normalised before training lightweight ML models that meet TinyML constraints. 

The framework achieved a fault inference latency of 5 ms, and adaptive learning improved classification 

accuracy from 85% to 95% across five incremental training rounds (+10 pp). Feature weight analysis 

showed that Cycles (0.40) and CacheMiss (0.25) provided the strongest fault discrimination, followed 

by BranchMis predict (0.20) and Stall events (0.15). Counter-signal behaviour exhibited a wider 

anomaly amplitude of approximately ±1.9 under fault conditions versus ±1.1 in normal states, enabling 

detection sensitivity despite a 92% normal and 8% fault sample ratio. Evaluation confirms that reliable 

fault intelligence for RISC-V edge silicon is achievable with a minimal HPC setup, without cloud-heavy 

retraining. The study concludes that the proposed pipeline supports deployable, adaptive, and ultra-low-

overhead fault prediction, improving edge processor dependability while preserving compute, memory, 

and latency budgets. 
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1. Introduction 

 
The rapid expansion of edge computing has pushed processor architectures toward ultra-low-power, 

open, and scalable instruction sets, among which RISC-V has emerged as a dominant choice due to its 

modular ISA, customisation flexibility, and strong adoption in embedded intelligence pipelines (Cui, 
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Li, & Wei, 2023; Radford, 2025; D. Xu et al., 2021). However, as edge processors operate in unreliable 

field environments including voltage noise, thermal drift, memory ageing, and clock instability, 

hardware faults and silent data corruption remain key challenges that degrade system reliability (Ehret, 

Rosario, Gettings, & Kinsy, 2020; Hou et al., 2021; Moghaddasi, Nasab, & Kargahi, 2020). Traditional 

fault detection approaches often rely on redundant execution, error-correcting codes (ECC), or heavy 

monitoring units, which introduce significant latency and memory overhead, making them less ideal for 

real-time edge constraints (Fazeli, Farivar, & Miremadi, 2005; Maniatakos, Kudva, Fleischer, & Makris, 

2013; Reddy, Rahman, & Lay-Ekuakille, 2024). To address this, recent studies highlight the value of 

hardware performance counters (HPCs) as a low-cost, minimally invasive source of observability for 

runtime behaviour modelling and failure signature extraction (Lan et al., 2025; Park & Choi, 2020; 

Pitchai & Pitchai, 2023). 

Advancements in TinyML and lightweight neural inference have enabled compact fault classifiers to 

run directly on microcontroller-grade silicon, reducing dependency on cloud-based retraining while 

sustaining high detection quality (Garai & Samui, 2025; Pereira, Marcondes, & Silva, 2023; H. Xu et 

al., 2024). Research shows that fault behaviour can be captured as temporal deviations in cycle counts, 

cache miss rates, branch instability, and pipeline stalls, which are strong predictors of abnormal 

execution states (Carrattieri et al., 2025; Netti et al., 2019; X. Wang et al., 2020). Despite high model 

accuracy in offline learning, many deployed fault detection systems fail to adapt to concept drift when 

workloads and operating conditions evolve, leading to poor generalisation over time (Dong et al., 2025; 

Gohil et al., 2024; Xiang, Zi, Cong, & Wang, 2023). This has motivated adaptive and online incremental 

learning, where models update from newly logged fault labels, maintaining sensitivity to rare fault 

signatures even under imbalanced datasets (Baptiste, Denis, Serge, & Sylvain, 2023; Ibrahim, Baloch, 

Anjum, Zikria, & Kim, 2021; Ray, 2024). 

Class imbalance is another critical issue, as fault samples are typically <10% of runtime traces, which 

can falsely inflate naïve accuracy if not addressed using recall-aware evaluation, weighted loss, or 

threshold calibration (Jiang & Ge, 2021; Qian & Li, 2023; Y. Wang, Wang, Ni, & Zhang, 2024). 

Effective edge fault prediction frameworks must therefore balance model accuracy, temporal anomaly 

sensitivity, and hardware overhead efficiency, especially ensuring inference latency remains minimal 

fault inference ≈ 5 ms (Kumar, Yashika, Singhal, Yashvardhan, & Priyadarshini, 2024; Myakala & 

Agrawal, 2025; Ortiz-Garces, Villegas-Ch, & Luján-Mora, 2025). Recent hardware-AI co-design 

studies also emphasise that HPC-driven anomaly learning can deliver >90% classification reliability 

when paired with sliding-window temporal feature buffers and adaptive retraining loops, making the 

method feasible for RISC-V edge processors without violating power or memory budgets (Descour et 

al., 2021; Marco, Taylor, Wang, & Elkhatib, 2020; Sinha, Chowdhury, Sharma, Sherke, & Das, 2023). 

This positions hardware-counter-based fault intelligence as a scalable path for next-generation 

dependable edge computing. 

The specific goal of this research is to design, validate, and evaluate a fully on-device adaptive AI 

framework capable of predicting rare hardware faults on RISC-V edge processors by using lightweight 

hardware performance counters as temporal behavioral features, ensuring (1) training overhead is 

concentrated but bounded, (2) fault inference latency remains ultra-low (≈5 ms), and (3) model accuracy 

continuously improves through incremental adaptive learning (85% → 95%), while maintaining strong 

anomaly sensitivity even under an imbalanced 92% normal vs 8% fault data ratio. This study aims to 

contribute a practical and deployable hardware-AI co-designed reliability pipeline suitable for low-

compute, low-memory, and low-power edge environments. 

 
 

2. Methodology 
 

Figure 1 presents an end-to-end research framework for AI-adaptive fault prediction on RISC-V edge 

processors using lightweight hardware performance counters as the primary sensing mechanism. The 

diagram is structured as a left-to-right pipeline, showing how raw runtime signals from an embedded 

processor are transformed into machine-learning features, used to train an adaptive model, and then 

deployed for real-time fault prediction. Each block represents a significant methodological phase, and 
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the arrows emphasise a continuous data flow from measurement to decision-making, which is essential 

for edge environments where faults may appear intermittently, and system resources are limited. 

The process begins with Data Collection, where the RISC-V edge processor is instrumented to produce 

two key data sources: Hardware Performance Counters and Fault Logs. Hardware counters provide 

low-overhead measurements of microarchitectural behaviour (e.g., instruction counts, cycles, stalls, 

cache events, and branch-related events), making them suitable for lightweight monitoring on resource-

constrained devices. Fault logs serve as the ground truth, recording when faults occur (or when the 

system enters abnormal states such as crashes, hangs, incorrect outputs, or watchdog resets). By pairing 

counter traces with fault labels, the framework enables supervised learning and supports the creation of 

a dataset that reflects realistic runtime behaviour under both normal and faulty conditions. 

 

 
Figure 1. AI-Adaptive Fault Prediction Framework for RISC-V Edge Processors Using Lightweight 

Hardware Counters 

 

Next, the pipeline moves to Data Preprocessing, which includes two crucial operations: Feature 

Extraction and Data Normalisation. Feature extraction converts raw counter readings into informative 

variables for AI models, commonly by aggregating counters over time windows, computing rates (e.g., 

misses per thousand instructions), deriving statistical descriptors (mean, variance, peaks), or forming 

temporal features that capture evolving behaviour leading up to a fault. Data normalisation scales or 

standardises these features to reduce bias caused by different counter magnitudes and workload 

variability. This step improves model stability, helps learning converge faster, and ensures that features 

like “cycles” do not dominate simply because they are numerically larger than others. The Model 

Training stage highlights two aspects: the use of AI Algorithms and Adaptive Learning. The AI 

algorithms block indicates that both traditional machine-learning models (such as decision trees, SVMs, 

and logistic regression) and lightweight deep-learning options (such as small neural networks) can be 

considered, depending on accuracy and runtime constraints. The adaptive learning block is central to 

the “AI-adaptive” idea: instead of training once and deploying forever, the model can be updated 

incrementally and online. This is important on edge processors because workloads, operating 

conditions, and fault patterns can drift over time; an adaptive model can incorporate new labelled or 

semi-labelled data to remain accurate without requiring expensive full retraining in the cloud. 

After training, the system enters Fault Prediction, which is framed as real-time fault detection with two 

specific outputs: anomaly detection and failure prediction. In practice, anomaly detection focuses on 

identifying deviations from normal counter behaviour (e.g., sudden increases in stalls, abnormal cache 

patterns, or unexpected instruction-to-cycle ratios) that may indicate an emerging issue. Failure 

prediction extends this by estimating the likelihood of an upcoming fault before it becomes 

catastrophic—enabling proactive mitigation such as resetting a module, switching to a safe mode, 

reducing clock frequency, or alerting a supervisor system. The “real-time” emphasis indicates that 

inference is intended to run on-device (or near-device), aligning with the edge context where 

connectivity and latency can be constrained. The Evaluation stage then assesses the framework from 

both AI and system perspectives. The “Accuracy Analysis” component typically covers classification 

or detection quality using metrics such as accuracy, precision/recall, F1-score, false-alarm rate, and 

missed-detection rate, which is significant because excessive false positives can be costly in embedded 
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systems. “Performance Metrics” reflects the edge requirements for measuring overhead: inference 

latency, CPU utilisation, memory footprint, and energy impact. Finally, “System Impact Assessment” 

evaluates how the fault prediction mechanism affects overall reliability and operation, such as how early 

warnings translate into reduced downtime, improved safety, or fewer silent data corruptions, while 

keeping the monitoring lightweight. 

The diagram concludes with a Conclusion that summarises Findings & Recommendations and 

reinforces the overarching contribution: AI-driven fault prediction for RISC-V edge processors using 

lightweight counters. This final block implies that evaluation results feed into practical guidance, such 

as which counters are most informative, which model families best balance accuracy and overhead, and 

how adaptive updates should be scheduled to avoid destabilising the system. Overall, Figure 1 presents 

a cohesive methodology that connects hardware-level observability (counters and logs) to robust AI 

modelling and real-time fault awareness, specifically designed for the constraints and variability of edge 

computing platforms. 

 

Table 1. Tools and Materials for AI-Adaptive Fault Prediction on RISC-V Edge Processors Using 

Lightweight Hardware Counters 

Category Tool / Material Purpose in Research Key Specification / 

Example 

Edge Processor 

Hardware 

RISC-V Edge 

Processor Board 

Target device for fault 

data collection 

RV32IM/RV64GC 

core, low-power 

MCU/SoC class 

 Lightweight Hardware 

Performance Counters 

Source of real-time 

fault-predictive 

features 

Cycles, retired 

instructions, cache 

misses, branch 

mispredictions, stalls 

Fault Injection / 

Monitoring 

Fault Injection 

Controller (optional 

FPGA/µController) 

Inject or simulate 

processor faults for 

dataset generation 

SPI/UART controlled, 

voltage/clock glitch, 

memory bit-flip 

 Fault Logging System Record labelled failure 

events 

Timestamped fault 

logs, binary/system 

crash flags 

Data Acquisition On-board Debug 

Interface 

Read hardware counter 

registers 

JTAG, OpenOCD, 

GDB Debugger 

 Serial/UART Logger Stream runtime 

counter values + fault 

labels 

115200 baud 

(example), buffered 

streaming 

Software / OS Stack Bare-metal Firmware 

or Edge RTOS 

Runtime execution 

environment 

FreeRTOS / Zephyr 

RTOS / custom bare-

metal 

 RISC-V Toolchain Compile and deploy 

workloads 

GCC/LLVM RISC-V 

toolchain 

Dataset Processing Data Preprocessing 

Scripts 

Clean, normalise, 

structure counter data 

Python feature 

extraction, scaling, and 

windowing 

 Sliding Window 

Feature Buffer 

Store temporal 

sequences of counter 

behaviour 

50–200 cycles window 

(example) 

AI / ML Framework Lightweight ML 

Model 

Train and infer fault 

probability 

TinyML models: 

decision tree, SVM, 

small NN 

 Adaptive/Online 

Learning Module 

Update the model with 

the new fault 

behaviour 

Incremental training, 

low compute footprint 
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Evaluation Metrics Statistical Analysis 

Tools 

Measure model 

performance 

Accuracy, F1-score, 

false-positive rate 

 System Impact 

Assessment Module 

Analyse the effect of 

faults on reliability 

Fault severity 

classification 

 

Table 1 outlines the core tools and materials that enable AI-adaptive fault prediction on RISC-V edge 

processors while maintaining a lightweight and deployable research footprint. The hardware foundation 

is built around a RISC-V processor board, commonly based on RV32IM or RV64GC cores, selected 

for their energy-efficient execution and suitability for edge-class SoCs or microcontroller-based 

implementations. The primary observability mechanism relies on lightweight hardware performance 

counters that capture real-time microarchitectural signals, including cycles, retired instructions, cache 

misses, branch mispredictions, and pipeline stalls. These counters are intentionally chosen because they 

incur minimal overhead, do not require invasive instrumentation, and can be continuously sampled 

during runtime without significantly affecting processor timing or power behaviour. The table further 

details the fault-injection and monitoring infrastructure, which is critical for generating labelled datasets 

under controlled failure scenarios. A fault controller, often implemented using an auxiliary FPGA or 

microcontroller, simulates realistic hardware faults, such as voltage or clock glitches and memory bit 

flips, via interfaces like SPI or UART. Alongside fault simulation, a fault logging system records system 

crash flags, watchdog resets, and incorrect execution outcomes with precise timestamps, serving as 

ground-truth labels. This pairing of injected faults with structured logs enables AI models to learn 

correlations between abnormal counter behaviour and actual failure events, a prerequisite for supervised 

learning and for later evaluating the model’s ability to predict faults before they fully manifest. 

On the software side, the framework leverages a RISC-V toolchain (GCC or LLVM) to compile and 

deploy workloads either on bare-metal firmware or under a lightweight RTOS such as FreeRTOS or 

Zephyr. The choice between bare-metal execution and RTOS integration is research-dependent, but 

both are suitable because they expose low-level hardware counters and deterministic runtime behaviour 

for profiling. The dataset processing stage is supported by Python-based preprocessing scripts that 

extract statistical or sliding-window features from raw counter streams and normalise them to remove 

scale bias across heterogeneous workloads. The use of a sliding-window feature buffer, typically 

covering 50 to 200 cycles, introduces temporal awareness, enabling models to detect progressive 

degradation patterns rather than single outlier samples, thereby significantly improving early-fault 

sensitivity. Finally, Table 1 presents the AI modelling and evaluation stack, emphasising lightweight 

inference and adaptive learning. The ML models are expected to fall into TinyML-compatible 

categories, such as small neural networks, SVMs, or decision trees, ensuring fault inference can run on-

device without excessive compute or memory demand. The adaptive or online learning module supports 

incremental model updates based on newly observed fault behaviour, addressing the concept drift 

common in long-running edge deployments. Evaluation tools measure both AI accuracy (using F1-

score, precision/recall, and false-alarm rate) and system-level reliability impact, including fault severity 

classification and operational stability. Overall, the table demonstrates a co-designed hardware-AI 

methodology in which fault-predictive intelligence emerges from low-cost hardware signals, is 

processed into lightweight temporal features, is learned by compact adaptive models, and is validated 

through both statistical accuracy and embedded system reliability assessment. 

 
 

3. Result & Discussion 
 

Figure 2 illustrates the processing time (ms) required at each research step in the AI-adaptive fault 

prediction workflow. The results show that data collection takes 10 ms, followed by data preprocessing 

at 8 ms, indicating that the sensing and preparation stages impose relatively modest overhead. The 

processing time then rises sharply during model training, reaching a maximum of 20 ms, suggesting 

that training is the most computationally intensive component in the pipeline. This pattern is expected 

because training involves iterative optimisation and parameter updates, primarily when multiple 
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features from hardware counters are used, and the model must learn discriminative patterns between 

normal and faulty behaviour. 

After training, the time drops significantly during fault prediction, reaching a minimum of 5 ms, 

demonstrating that inference is lightweight and suitable for real-time execution on edge systems. The 

final stage, evaluation, increases to 12 ms, reflecting the additional computations needed to calculate 

performance metrics and system-impact indicators (e.g., accuracy analysis, false-positive rate, and 

reliability assessment). Overall, the figure highlights a practical distribution of computational cost: the 

workflow concentrates heavier computation in training (20 ms) and moderate computation in evaluation 

(12 ms), while keeping operational stages, especially real-time prediction (5 ms), efficient enough for 

deployment on resource-constrained RISC-V edge processors. 

 

 
Figure 2. Processing Time per Research Step 

 

Figure 3 presents the fault injection ratio used to construct the experimental dataset for AI-adaptive 

fault prediction. The chart shows that 92% of the collected runtime samples correspond to regular 

operation, while only 8% represent fault conditions. This distribution reflects the realistic behaviour of 

edge processors in the field, where faults are relatively rare compared to stable execution. It also 

indicates that the monitoring pipeline primarily observes nominal microarchitectural patterns from 

hardware performance counters, while a smaller portion of the dataset captures abnormal counter 

signatures produced during injected or simulated faults. 

At the same time, the 92% vs. 8% split reveals a clear class imbalance, a critical methodological 

consideration for training and evaluating fault prediction models. With fault samples accounting for 

only 8%, a naïve classifier could appear accurate by predicting “normal” most of the time, yet still fail 

to detect faults reliably. Therefore, this ratio implies that the research must emphasise metrics beyond 

accuracy, such as recall, precision, F1-score, and false-alarm rate, and may require strategies like 

weighted loss functions, resampling, or threshold tuning to improve sensitivity to the minority fault 

class. Overall, the figure confirms that fault prediction is treated as an imbalanced detection problem, 

aligning with the real-world objective of identifying rare but high-impact failures on RISC-V edge 

systems. 
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Figure 3. Fault Injection Ratio 

 

Figure 4 shows the feature contribution weights derived from lightweight hardware performance 

counters, indicating the extent to which each counter-related feature influences the fault prediction 

model. The results suggest that Cycles is the most dominant feature, with a weight of 0.40, indicating 

that variations in execution cycles contribute the largest share to distinguishing normal from faulty 

behaviour. The next most influential feature is CacheMiss, with a weight of 0.25, highlighting that 

memory hierarchy disturbances, such as increased cache miss rates, constitute a significant indicator of 

abnormal execution. In comparison, BranchMis contributes a moderate weight of 0.20, while Stall has 

the smallest weight at 0.15, suggesting it provides supportive but less discriminative information 

relative to the other counters. 

From an architectural perspective, these weights imply that faults in edge-class RISC-V processors 

often manifest first as timing and performance irregularities. The high weight of Cycles (0.40) indicates 

that faults can significantly disrupt overall progress, producing measurable slowdowns or unstable 

execution timing. The substantial contribution of CacheMiss (0.25) further suggests that fault conditions 

may interfere with memory access patterns or data integrity, leading to more frequent misses and 

increased latency. Meanwhile, BranchMis (0.20) and Stall (0.15) still matter because faults can degrade 

control-flow predictability and pipeline efficiency, but their lower weights indicate they are either less 

sensitive or more workload-dependent. Overall, Figure 4 supports a practical design insight for 

lightweight monitoring: prioritising cycle- and cache-related counters can provide strong predictive 

power while keeping the counter set minimal for real-time edge deployment. 

 

 
Figure 4. Feature Contribution Weight (Hardware Counters) 
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Figure 5 illustrates how model accuracy improves across adaptive training rounds, demonstrating the 

benefit of incremental or online updates in the proposed framework. The accuracy starts at 85% in 

Round 1, indicating that the initial model can already distinguish between normal and fault behaviour 

reasonably well using hardware counter features. As additional training rounds are performed, accuracy 

increases steadily to 88% (Round 2) and 90% (Round 3), suggesting that the model learns more robust 

decision boundaries as it is exposed to more representative runtime patterns and fault signatures. This 

gradual increase indicates stable learning behaviour rather than noisy fluctuations, which is essential 

for edge deployments where updates must not destabilise prediction performance. 

The trend becomes more pronounced in later rounds, with accuracy reaching 93% in Round 4 and 

peaking at 95% in Round 5. Overall, the model gains +10 percentage points from Round 1 to Round 5 

(from 85% to 95%), strongly supporting the effectiveness of adaptive learning in handling evolving 

workloads and fault conditions. In practical terms, this means that as the edge system continues to 

operate and collect new labelled events (or validated fault logs), the prediction model can refine itself 

and reduce misclassification over time. The consistent improvement across rounds also suggests that 

the feature set extracted from lightweight hardware counters remains informative under concept drift, 

making adaptive retraining a viable strategy to sustain high fault-prediction accuracy on RISC-V edge 

processors. 

 

 
Figure 5. Model Accuracy Over Training Rounds (Adaptive Learning) 

 

Figure 6 compares the behaviour of the hardware counter signal under normal and fault conditions over 

the observation interval from approximately t = 0 to t = 10. Under regular operation (blue curve), the 

signal follows a relatively smooth oscillatory pattern, mainly remaining within −1.0 to +1.1, indicating 

stable microarchitectural behaviour and consistent execution dynamics. In contrast, the fault condition 

(orange curve) shows substantially higher volatility, with frequent spikes and drops that deviate from 

the normal trend. The fault signal peaks at around +1.8 to +1.9 and dips to around −1.4 to −1.5, 

demonstrating that faults introduce larger, more abrupt fluctuations in the counter readings compared 

to the baseline. 

The figure also highlights how the anomaly becomes particularly evident during both the rising and 

falling phases of the signal. For example, around t ≈ 1–2 and t ≈ 7–8, the normal signal stays near the 

top of its cycle at roughly +0.9 to +1.1, while the fault signal repeatedly overshoots beyond +1.5 and 

exhibits sharp oscillations. Similarly, near the trough around t ≈ 4–5, the standard curve approaches 

roughly −1.0, whereas the fault curve shows deeper negative excursions down to approximately −1.5 

along with rapid jitter. These numeric differences indicate that faults are associated not only with an 
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amplitude shift (larger range) but also with increased noise-like variability, which is precisely the type 

of pattern that anomaly detection and failure prediction models exploit by learning that sudden, high-

amplitude deviations and unstable counter dynamics are intense precursors or indicators of abnormal 

system states on RISC-V edge processors. 

 

 
Figure 6. Counter Behaviour Under Fault vs Normal (Anomaly Pattern) 

 

This article introduces a hardware-AI co-adaptive fault prediction pipeline specifically optimised for 

RISC-V edge processors, leveraging only lightweight hardware performance counters (HPCs) to keep 

inference latency extremely low. Unlike prior work that focuses mainly on offline fault modelling or 

cloud-dependent retraining, the proposed framework demonstrates that on-device adaptive learning 

steadily improves fault classification accuracy from 85% to 95% across incremental training rounds, 

showing resilience against workload evolution and concept drift without exceeding edge compute 

budgets. The study further validates that runtime fault inference requires only 5 ms, a significantly lower 

overhead than conventional fault monitoring or redundancy-based detection approaches, making the 

solution suitable for real-time edge reliability deployment. 

The research also provides new architectural insights into feature importance for early-fault sensitivity, 

showing that Cycles (0.40) and CacheMiss (0.25) have the strongest discriminative power, while 

BranchMis (0.20) and Stall (0.15) provide secondary but still meaningful predictive signals. These 

findings reinforce a practical innovation: a minimal counter set combined with sliding-window temporal 

feature buffering can expose measurable anomaly amplitudes of ±1.9 under fault conditions (vs. ±1.1 

in normal states), enabling reliable prediction even with a highly imbalanced dataset (92% normal vs. 

8% fault samples). Together, these contributions position the work as a deployable, adaptive, and ultra-

low-overhead fault intelligence methodology that bridges microarchitectural observability and 

continuous learning, advancing the state of dependable edge processing on open-ISA silicon. 

 
 

4. Conclusion 
 

In conclusion, this study demonstrates that AI-adaptive fault prediction on RISC-V edge processors can 

be achieved effectively using a minimal and lightweight hardware-counter feature set, enabling real-

time reliability awareness with very low system overhead. The framework shows that on-device 

adaptive learning improves model accuracy from 85% to 95% across five incremental training rounds 
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(+10 pp), confirming robustness to workload evolution and concept drift. Fault inference remains highly 

efficient at 5 ms, supporting real-time edge deployment, while HPC anomaly analysis validates a wider 

fault signal amplitude range of approximately ±1.9 (fault) versus ±1.1 (normal) under a 92% normal to 

8% fault class imbalance, highlighting the model’s sensitivity to rare but high-impact failures. The 

dominant predictive contributions of Cycles (0.40) and CacheMiss (0.25) further confirm that timing 

and memory-hierarchy disturbances are the most informative, low-cost indicators for early fault 

awareness. Overall, this work contributes a practical, deployable hardware-AI co-adaptive reliability 

pipeline for resource-constrained edge systems, reinforcing the feasibility of dependable fault 

intelligence on open-ISA silicon without cloud-heavy retraining or intrusive monitoring hardware. 
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