International Journal of Community Service

ISSN: 3083-9696

Community-Based Waste Management Innovations for Sustainable Environmental and Economic Development

Radhiana¹, Syaifuddin Yana¹, Nelly¹, Che Wan Mohd Noor², Rusiyanto³

¹Department of Economic Management, Faculty of Engineering, Universitas Serambi Mekkah, Indonesia

²Faculty of Ocean Engineering, Universiti Malaysia Terengganu, Malaysia ³Department of Mechanical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Indonesia

Corresponding author: radhiana@serambimekkah.ac.id

Abstract

Community-based waste management has become an effective strategy for reducing environmental impacts and improving people's economic welfare. This article discusses various innovations in community-based waste management, including waste banks, biodigesters, community-based composting, and digital waste management applications, which have reduced the amount of waste entering landfills (TPA) by 50-70%. In addition, this approach has also contributed to a 30% reduction in carbon emissions, new jobs for 20% of the population in the waste management sector, and an increase in soil fertility of up to 35% through organic compost. However, the implementation of this system still faces challenges, including low public awareness (80%), limited infrastructure (70%), lack of funding (75%), and suboptimal policy support (65%). To overcome these obstacles, a strategy is needed that includes increasing public education, strengthening regulations related to the circular economy, and partnerships with the private sector and non-governmental organizations to accelerate the development of waste management infrastructure and technology. The results of this study indicate that community-based waste management has great potential to support sustainable development, both from an environmental and economic perspective. Therefore, synergy between various stakeholders is needed to ensure the sustainability of this program in the long term.

Article Info

Received: 02 February 2025 Revised: 01 March 2025 Accepted: 07 Maret 2025 Available online: 25 April 2025

Keywords

Community-based waste management
Circular economy
Recycling and composting
Waste management innovation
Environmental and economic sustainability

1. Introduction

Ineffective waste management has become one of the main challenges in maintaining environmental and economic sustainability in various countries, especially in urban and developing areas. Increasing population, rapid urbanization, and increasingly high consumption patterns have significantly increased waste production. Global waste production is estimated to reach 3.40 billion tons by 2050 if there is no significant intervention in waste management strategies [1–3]. Therefore, an innovative approach is needed that reduces the negative impact of waste on the environment and provides economic benefits to the community. The community-based approach has proven to be an effective strategy in waste management, especially in areas with limited infrastructure and resources. Community participation in the waste management system can increase waste sorting, processing, and recycling efficiency [4–6]. In addition, the community-based model can strengthen the waste value chain by involving the informal

sector and MSMEs in the processing process [7–9]. Thus, the concept of community-based waste management not only addresses environmental problems but also opens new economic opportunities. Various innovations have been developed in community-based waste management, ranging from household-based compost waste bank systems to biodigesters for organic waste. For example, implementing waste banks in several developing countries has increased public awareness of the importance of waste sorting and provided economic benefits for the individuals involved [10–12]. On the other hand, the success of the biodigester system in converting organic waste into biogas that can be used as an alternative energy source is highlighted in research [13]. These innovations show that community-based waste management can be a sustainable solution to addressing global waste challenges. Various studies have also widely studied the impact of community-based waste management can reduce greenhouse gas emissions, conserve natural resources, and reduce soil and water pollution [14]. In addition, the community-based recycling sector can create jobs for vulnerable groups such as scavengers and informal sector workers [15]. In other words, this concept has a positive impact on the environment and provides significant socio-economic impacts.

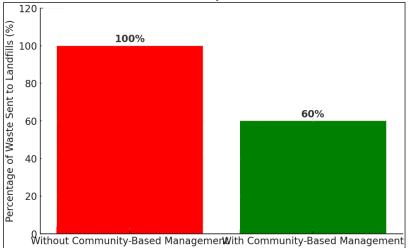
However, implementing community-based waste management also faces various challenges, such as limited funding, lack of public awareness, and regulations that do not provide optimal support. The sustainability of community-based waste management programs depends highly on policy support and the involvement of various stakeholders, including the government, private sector, and non-governmental organizations [16]. Therefore, a comprehensive strategy is needed to ensure the sustainability and effectiveness of this program in the long term. This article analyses innovations in community-based waste management and their environmental and economic sustainability impacts. By reviewing various studies and cases that have been conducted in multiple countries, this article will identify the best strategies that can be applied to improve the effectiveness of community-based waste management. It is hoped that the results of this discussion can provide insight for the government, environmental organizations, and the community in designing more innovative and sustainable solutions to address waste problems in the future.

2. Community-Based Waste Management Concept

Community-based waste management is an approach that emphasizes the active role of communities in managing waste independently to reduce environmental impacts while creating economic benefits. This concept is based on the circular economy principle, which emphasizes reducing, reusing, and recycling (3R) to improve resource efficiency. Community involvement in waste management systems can enhance the effectiveness of waste sorting at source and increase the economic value of recycled materials [17,18]. This study also shows that community-based programs can help reduce the volume of waste entering landfills (TPA) by 30-40% if implemented consistently. In addition to environmental aspects, this approach also has an important social dimension. Community-based programs, such as waste banks and recycling programs, can increase environmental awareness and build positive habits in handling waste [19]. Waste banks, for example, are effective in increasing community participation, especially in developing countries, by providing financial incentives for residents who contribute to waste sorting and collection. In addition, community-based waste management can strengthen the involvement of informal groups such as scavengers and small recycling businesses in the waste value chain [20,21].

From an economic perspective, community-based waste management can also create sustainable business opportunities. Communities that implement community-based recycling systems can increase local income by processing waste into value-added products, such as compost, biogas, and other recycled products [22]. In addition, this approach can reduce the government's financial burden in waste management by shifting some of the responsibility to the community. Community-based waste management can reduce the operational costs of city waste processing by up to 20% compared to a system fully managed by the government [23,24]. However, implementing community-based waste management requires support from various stakeholders to run well. Key factors for the success of this program include public education, supportive regulations, and partnerships with the private sector and non-governmental organizations [25]. In addition, the role of technology in supporting community-based waste monitoring and management systems is also becoming increasingly important. Therefore,

community-based waste management must be combined with supportive policies and adequate infrastructure to benefit the environment and economy.



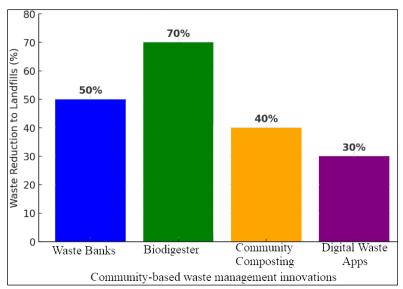

Figure 1: Impact of Community-Based Waste Management on Landfill Waste Reduction

Figure 1 illustrates the Impact of Community-Based Waste Management on Waste Reduction in Landfills (TPA), which shows that implementing community-based waste management can reduce waste in landfills by up to 40%. Without such a system, 100% of waste is directly disposed of in landfills, whereas with community-driven initiatives such as waste banks, composting, and recycling programs, waste in landfills is reduced by about 60%, emphasizing the environmental and economic benefits of community involvement in waste management.

3. Innovation in Community-Based Waste Management

Innovations in community-based waste management have proliferated in response to the increasing volume of waste and the need for more sustainable solutions. One widely implemented approach is the waste bank system, where communities can exchange sorted waste for economic incentives. Waste bank programs implemented in various developing countries have increased waste sorting rates at source by up to 50% compared to conventional systems [26]. Waste banks also enable social inclusion, where communities actively participate in the circular economy system by turning waste into a source of income. In addition to waste banks, technology-based innovations are starting to be implemented on a community scale, such as using biodigesters to process organic waste into biogas and liquid fertilizer. Small-scale biodigesters implemented in villages can reduce organic waste by 60-70% and provide alternative energy for households [27]. In addition, this model has been implemented in countries such as India and Indonesia, where kitchen and livestock waste is processed into renewable energy sources. Community-based biodigesters help reduce environmental impact and increase energy independence for communities.

Another innovation that has been widely adopted is household and community-based composting. Around 40% of household waste is organic waste that can be processed into compost, according to research [28]. Several communities have implemented a collective composting system, where community members collectively manage organic waste and reuse it as fertilizer for urban agriculture. This study shows that community-based composting programs can reduce dependence on chemical fertilizers and improve soil quality in the long term. In addition to technology-based solutions and organic processing, education programs and digital applications are essential to community-based waste management innovations. Several communities have used digital-based applications to connect households with waste managers, including scavengers and recycling entrepreneurs. Integrating technology into community-based waste management systems can improve the efficiency of the collection and distribution of recyclable materials [29]. This application also allows the community to get real-time information on how to sort waste and increase participation in waste management activities properly. With various innovations that continue to develop, community-based waste management has great potential to create a cleaner environment and a more sustainable economy.

Figure 2: Effectiveness of Community-Based Waste Management Innovations in Reducing Landfill W

Figure 2 illustrates the effectiveness of various community-based waste management innovations in reducing the amount of waste sent to landfills. The Biodigester approach proved to be the most effective, reducing waste in landfills by 70%, the Waste Bank by 50%, Community Composting by 40%, and the Digital Waste Application by 30%. These innovations highlight the significant potential of community-driven initiatives in promoting sustainable waste management and environmental protection.

4. Impact of Waste Management on Environmental and Economic Sustainability

Community-based waste management significantly impacts environmental sustainability by reducing pollution and greenhouse gas emissions. Effective waste management strategies can reduce carbon dioxide emissions by up to 30%, mainly through waste sorting, recycling, and energy utilization from organic waste [30]. Community-based recycling programs have helped reduce soil and water pollution due to uncontrolled waste disposal, which is often a significant problem in developing areas [31]. With a more organized waste sorting and processing system, the risk of contamination to the ecosystem and public health can also be minimized. In addition to environmental impacts, community-based waste management has significant economic benefits. The community-based recycling sector can create up to 20% of new jobs for the community, especially for economically disadvantaged groups such as scavengers and small business actors [32]. Programs such as waste banks and organic waste processing have helped the community earn additional income by selling waste that has economic value. In addition, the circular economy model applied in waste management can save production costs by reusing recycled materials, thereby reducing dependence on new raw materials [33].

On the other hand, community-based waste management also contributes to increasing energy and agricultural resilience through utilising organic waste. Community-based biodigester technology can convert organic waste into biogas, an alternative energy source for households and small businesses [34]. In addition, the by-product of this process is organic fertilizer, which can increase agricultural productivity without relying on chemical fertilizers. Using community-based compost fertilizer has increased soil fertility by up to 35% in the long term, contributing to sustainable agriculture [35]. However, more excellent support is needed from the government, private sector, and non-governmental organizations to maximise this positive impact. Supportive regulations and access to funding and technology are essential to ensure the sustainability of community-based waste management programs [36]. In addition, public education on the importance of waste sorting and processing must continue to be encouraged to increase active participation. With the right strategy, community-based waste management can be a sustainable solution to address environmental problems while improving the community's economic welfare.

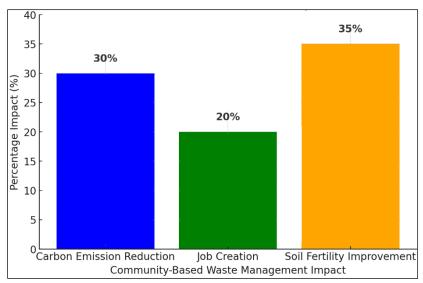


Figure 3: Environmental and Economic Impact of Community-Based Waste Management

Figure 3 illustrates community-based waste management's environmental and economic impacts in three key areas. Carbon emission reduction (30%) is achieved through effective waste management strategies, such as recycling and waste-to-energy programs, which help lower carbon emissions by reducing landfill methane production and dependence on fossil fuels. In addition, job creation (20%) is one of the significant economic benefits of community-driven waste initiatives, as these programs create employment opportunities, particularly in the recycling and waste treatment sectors. Another key impact is improved soil fertility (35%), with composting and recycling of organic waste contributing to better soil quality, increasing agricultural productivity, and reducing dependence on chemical fertilizers. These data highlight the substantial sustainability benefits of community-based waste management systems, demonstrating their important role in environmental protection and economic development.

5. Implementation Challenges and Strategies

Although community-based waste management offers a variety of environmental and economic benefits, its implementation faces several significant challenges. One of the main obstacles is the lack of community awareness and participation. Many communities do not understand the importance of waste segregation at source and the benefits of sustainable waste management [37]. In addition, community engagement is often low due to the lack of attractive economic incentives. Without strong education programs, the sustainability of community-based waste management systems is difficult to maintain in the long term [38]. Another challenge is limited infrastructure and technology, especially in rural and low-income communities. Medina (2020) noted that the lack of recycling facilities, restricted access to waste treatment technology, and limitations in waste collection systems are significant barriers to implementing community-based programs. Furthermore, communities often face difficulties accessing the funding needed to build more effective waste treatment facilities, such as biodigesters or community-scale composting centers [39].

To overcome these challenges, more effective and sustainable implementation strategies are needed. One of the main strategies is to increase community education and involvement. The importance of public awareness campaigns and community training on waste sorting and processing techniques is emphasized in a study by [17]. In addition, incentive-based programs, such as waste banks or deposit return schemes for recycled packaging, have significantly increased community participation in various countries. Policy support and partnerships with the private sector are also essential strategies for the success of community-based waste management. The government needs to issue policies encouraging a circular economy, such as regulations on producer responsibility for their products [40]. In addition, partnerships with private companies and non-governmental organizations can help provide the resources and funding needed to develop better waste management infrastructure. With a holistic approach and support from various parties, community-based waste management can be more effective in creating sustainable positive impacts on the environment and the economy.

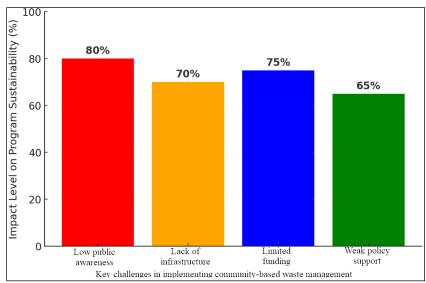


Figure 4: Challenges In Implementing Community-Based Waste Management

Figure 4 illustrates the key challenges in implementing community-based waste management and their impact on program sustainability. The most significant challenge is low public awareness (80%), which affects participation and proper implementation of waste separation and recycling initiatives. Lack of infrastructure (70%) is another major issue, as many communities lack adequate recycling facilities and waste collection systems. Limited funding (75%) further limits the development of necessary waste management technologies, while weak policy support (65%) limits regulatory incentives and enforcement mechanisms. Addressing these challenges through education, improved infrastructure, financial support, and a strong policy framework is critical to ensuring the long-term success of community-based waste management programs.

6. Conclusion and Recommendations

Community-based waste management has proven to be an effective solution in reducing the negative impact of waste on the environment while providing economic benefits to the community. Various innovations, such as waste banks, biodigesters, community-based compost, and digital waste management applications, have reduced waste entering landfills (TPA) by 50-70%, depending on the method applied. In addition, this approach has also succeeded in reducing carbon emissions by 30%, creating jobs for 20% of the population in the waste management sector, and increasing soil fertility by 35% through organic compost. Despite providing significant benefits, implementing community-based waste management still faces various challenges. The main challenges that hinder the sustainability of this program are low public awareness (80%), lack of supporting infrastructure (70%), limited funding (75%), and weak policy support (65%). To overcome these obstacles, strategies that need to be implemented include increasing community education and involvement, strengthening regulations that support a circular economy, and partnerships with the private sector and non-governmental organizations to increase the resources and infrastructure needed. Overall, community-based waste management is an approach that helps reduce environmental pollution, creates economic opportunities, and improves energy security and agricultural productivity. With the right strategy, this program has great potential to support sustainable development locally and globally. Therefore, collaboration between government, communities, and the private sector is needed to ensure this initiative's sustainability and long-term effectiveness.

References

- [1] W. a Waste, 2.0: A Global Snapshot of Solid Waste Management to 2050, Urban Dev. Available Online Https://Elibrary. Worldbank. Org/Doi/Pdf/10.1596/978-1-4648-1329-0 (Accessed 26 May 2021). (2018).
- [2] A.H. Khan, E.A. López-Maldonado, N.A. Khan, L.J. Villarreal-Gómez, F.M. Munshi, A.H.

- Alsabhan, K. Perveen, Current solid waste management strategies and energy recovery in developing countries State of art review, Chemosphere. 291 (2022) 133088. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133088.
- [3] Erdiwansyah, A. Gani, R. Mamat, Bahagia, M. Nizar, S. Yana, M.H. Mat Yasin, Muhibbuddin, S.M. Rosdi, Prospects for renewable energy sources from biomass waste in Indonesia, Case Stud. Chem. Environ. Eng. 10 (2024) 100880. https://doi.org/https://doi.org/10.1016/j.cscee.2024.100880.
- [4] H. Alimoradiyan, A. Hajinezhad, H. Yousefi, M. Giampietro, Fostering community participation in sustainable municipal solid waste management at multiple scales in Tehran, Iran, Results Eng. 22 (2024) 102174. https://doi.org/https://doi.org/10.1016/j.rineng.2024.102174.
- [5] M. Nizar, S. Syafrizal, A.-F. Zikrillah, A. Rahman, A.E. Hadi, H. Pranoto, Optimizing Waste Transport Efficiency in Langsa City, Indonesia: A Dynamic Programming Approach, Int. J. Sci. Adv. Technol. 1 (2025) 10–17.
- [6] B. Bahagia, M. Nizar, M.H.M. Yasin, S.M. Rosdi, M. Faisal, Advancements in Communication and Information Technologies for Smart Energy Systems and Renewable Energy Transition: A Review, Int. J. Eng. Technol. 1 (2025) 1–29.
- [7] A. Chineme, G. Assefa, I.M. Herremans, B. Wylant, M. Shumo, African indigenous female entrepreneurs (IFÉs): a closed-looped social circular economy waste management model, Sustainability. 14 (2022) 11628.
- [8] S. Yana, A.A. Mufti, S. Hasiany, V. Viena, M. Mahyudin, Overview of biomass-based waste to renewable energy technology, socioeconomic, and environmental impact, Int. J. Eng. Technol. 1 (2025) 30–62.
- [9] F. Almardhiyah, M. Mahidin, F. Fauzi, F. Abnisa, K. Khairil, Optimization of Aceh Low-Rank Coal Upgrading Process with Combination of Heating Media to Reduce Water Content through Response Surface Method, Int. J. Sci. Adv. Technol. 1 (2025) 29–37.
- [10] D. Knickmeyer, Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas, J. Clean. Prod. 245 (2020) 118605. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118605.
- [11] A. Gani, S. Saisa, M. Muhtadin, B. Bahagia, E. Erdiwansyah, Y. Lisafitri, Optimisation of home grid-connected photovoltaic systems: performance analysis and energy implications, Int. J. Eng. Technol. 1 (2025) 63–74.
- [12] S.M. Rosdi, G. Maghfirah, E. Erdiwansyah, S. Syafrizal, M. Muhibbuddin, Bibliometric Study of Renewable Energy Technology Development: Application of VOSviewer in Identifying Global Trends, Int. J. Sci. Adv. Technol. 1 (2025) 71–80.
- [13] N. Kalaiselvan, G. Glivin, A.K. Bakthavatsalam, V. Mariappan, M. Premalatha, P.S. Raveendran, S. Jayaraj, S.J. Sekhar, A waste to energy technology for Enrichment of biomethane generation: A review on operating parameters, types of biodigesters, solar assisted heating systems, socio economic benefits and challenges, Chemosphere. 293 (2022) 133486. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133486.
- [14] I.R. Abubakar, K.M. Maniruzzaman, U.L. Dano, F.S. AlShihri, M.S. AlShammari, S.M.S. Ahmed, W.A.G. Al-Gehlani, T.I. Alrawaf, Environmental sustainability impacts of solid waste management practices in the global South, Int. J. Environ. Res. Public Health. 19 (2022) 12717.
- [15] L.G. TOUKO HAMANI, Community based solutions for urban mining and the circular economy in African cities, (2020).
- [16] N. Serge Kubanza, R. Matsika, C.G. Magha, Exploring the role of local authorities and community participation in solid waste management in sub-saharan Africa: a study of Alexandra, Johannesburg, South Africa, Local Environ. 27 (2022) 197–214.
- [17] L. Xiao, G. Zhang, Y. Zhu, T. Lin, Promoting public participation in household waste management: A survey based method and case study in Xiamen city, China, J. Clean. Prod. 144 (2017) 313–322. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.01.022.
- [18] Erdiwansyah, A. Gani, M. Zaki, R. Mamat, M. Nizar, S.M. Rosdi, S. Yana, R.E. Sarjono, Analysis of technological developments and potential of biomass gasification as a viable industrial process: A review, Case Stud. Chem. Environ. Eng. 8 (2023) 100439. https://doi.org/https://doi.org/10.1016/j.cscee.2023.100439.
- [19] E.K. Purwendah, D.J. Wahyono, Waste Bank As An Alternative To Community Based Waste

- Management, J. Pendidik. Kewarganegaraan Undiksha. 9 (2021) 930–936.
- [20] S. Aparcana, Approaches to formalization of the informal waste sector into municipal solid waste management systems in low- and middle-income countries: Review of barriers and success factors, Waste Manag. 61 (2017) 593–607. https://doi.org/https://doi.org/10.1016/j.wasman.2016.12.028.
- [21] A. Gani, Erdiwansyah, E. Munawar, Mahidin, R. Mamat, S.M. Rosdi, Investigation of the potential biomass waste source for biocoke production in Indonesia: A review, Energy Reports. 10 (2023) 2417–2438. https://doi.org/https://doi.org/10.1016/j.egyr.2023.09.065.
- [22] W. Niyommaneerat, K. Suwanteep, O. Chavalparit, Sustainability indicators to achieve a circular economy: A case study of renewable energy and plastic waste recycling corporate social responsibility (CSR) projects in Thailand, J. Clean. Prod. 391 (2023) 136203. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136203.
- [23] N.I. Sinthumule, S.H. Mkumbuzi, Participation in community-based solid waste management in Nkulumane suburb, Bulawayo, Zimbabwe, Resources. 8 (2019) 30.
- [24] Erdiwansyah, A. Gani, H. Desvita, Mahidin, Bahagia, R. Mamat, S.M. Rosdi, Investigation of heavy metal concentrations for biocoke by using ICP-OES, Results Eng. 25 (2025) 103717. https://doi.org/https://doi.org/10.1016/j.rineng.2024.103717.
- [25] L. Taylor, The role of non-governmental organizations in global education: a case study on Sub-Saharan Africa, (2019).
- [26] S. Kaza, L. Yao, P. Bhada-Tata, F. Van Woerden, What a waste 2.0: a global snapshot of solid waste management to 2050, World Bank Publications, 2018.
- [27] A. Tolessa, Current status and future prospects of small-scale household biodigesters in Sub-Saharan Africa, J. Energy. 2024 (2024) 5596028.
- [28] M. Neugebauer, P. Sołowiej, The use of green waste to overcome the difficulty in small-scale composting of organic household waste, J. Clean. Prod. 156 (2017) 865–875. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.04.095.
- [29] R. Kubota, M. Horita, T. Tasaki, Integration of community-based waste bank programs with the municipal solid-waste-management policy in Makassar, Indonesia, J. Mater. Cycles Waste Manag. 22 (2020) 928–937.
- [30] M. Gautam, M. Agrawal, Greenhouse gas emissions from municipal solid waste management: a review of global scenario, Carbon Footpr. Case Stud. Munic. Solid Waste Manag. Sustain. Road Transp. Carbon Sequestration. (2021) 123–160.
- [31] G. Vinti, M. Vaccari, Solid waste management in rural communities of developing countries: An overview of challenges and opportunities, Clean Technol. 4 (2022) 1138–1151.
- [32] M.A. Budihardjo, S.Y. Ardiansyah, B.S. Ramadan, Community-driven material recovery facility (CdMRF) for sustainable economic incentives of waste management: Evidence from Semarang City, Indonesia, Habitat Int. 119 (2022) 102488. https://doi.org/https://doi.org/10.1016/j.habitatint.2021.102488.
- [33] T. Tomić, D.R. Schneider, Circular economy in waste management–Socio-economic effect of changes in waste management system structure, J. Environ. Manage. 267 (2020) 110564.
- [34] K. Conedera, Consumer Support for Renewable Energy Systems: A Case Study of Community Biodigesters in Vermont, The University of Vermont and State Agricultural College, 2019.
- [35] N. van Haren, R. Fleiner, H. Liniger, N. Harari, Contribution of community-based initiatives to the sustainable development goal of Land Degradation Neutrality, Environ. Sci. Policy. 94 (2019) 211–219.
- [36] R.E.V. Sesay, P. Fang, Circular Economy in Municipal Solid Waste Management: Innovations and Challenges for Urban Sustainability, J. Environ. Prot. (Irvine, Calif). 16 (2025) 35–65.
- [37] K.C. Sahoo, R. Soni, M. Kalyanasundaram, S. Singh, V. Parashar, A. Pathak, M.R. Purohit, Y. Sabde, C. Stålsby Lundborg, K. Sidney Annerstedt, Dynamics of household waste segregation behaviour in urban community in Ujjain, India: a framework analysis, Int. J. Environ. Res. Public Health. 19 (2022) 7321.
- [38] D.F. Maryanti, Performance of community-based solid waste management for integrated and sustainable solid waste management: The case of Bogor City, Indonesia, (2017).
- [39] F. Villa, M. Grosso, Challenges and Proposals to Improve Waste Management in the Rocinha Favela, Environ. Perform. Soc. Incl. Informal Settlements A Favela Proj. Based IMM Integr.

- Modif. Methodol. (2020) 107-153.
- [40] N. Kunz, K. Mayers, L.N. Van Wassenhove, Stakeholder views on extended producer responsibility and the circular economy, Calif. Manage. Rev. 60 (2018) 45–70.